Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America.
Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America.
PLoS Comput Biol. 2020 Nov 5;16(11):e1008293. doi: 10.1371/journal.pcbi.1008293. eCollection 2020 Nov.
Molecular Dynamics (MD) simulations seek to provide atomic-level insights into conformationally dynamic biological systems at experimentally relevant time resolutions, such as those afforded by single-molecule fluorescence measurements. However, limitations in the time scales of MD simulations and the time resolution of single-molecule measurements have challenged efforts to obtain overlapping temporal regimes required for close quantitative comparisons. Achieving such overlap has the potential to provide novel theories, hypotheses, and interpretations that can inform idealized experimental designs that maximize the detection of the desired reaction coordinate. Here, we report MD simulations at time scales overlapping with in vitro single-molecule Förster (fluorescence) resonance energy transfer (smFRET) measurements of the amino acid binding protein LIV-BPSS at sub-millisecond resolution. Computationally efficient all-atom structure-based simulations, calibrated against explicit solvent simulations, were employed for sampling multiple cycles of LIV-BPSS clamshell-like conformational changes on the time scale of seconds, examining the relationship between these events and those observed by smFRET. The MD simulations agree with the smFRET measurements and provide valuable information on local dynamics of fluorophores at their sites of attachment on LIV-BPSS and the correlations between fluorophore motions and large-scale conformational changes between LIV-BPSS domains. We further utilize the MD simulations to inform the interpretation of smFRET data, including Förster radius (R0) and fluorophore orientation factor (κ2) determinations. The approach we describe can be readily extended to distinct biochemical systems, allowing for the interpretation of any FRET system conjugated to protein or ribonucleoprotein complexes, including those with more conformational processes, as well as those implementing multi-color smFRET.
分子动力学(MD)模拟旨在提供原子水平的见解,了解构象动态的生物系统在实验相关的时间分辨率,如单分子荧光测量所提供的分辨率。然而,MD 模拟的时间尺度和单分子测量的时间分辨率的限制,使得获得重叠的时间范围的努力受到挑战,这些时间范围对于进行接近定量比较是必需的。实现这种重叠有可能提供新的理论、假设和解释,这些理论、假设和解释可以为理想的实验设计提供信息,这些设计可以最大限度地提高所需反应坐标的检测。在这里,我们报告了在时间尺度上与体外单分子荧光(荧光)共振能量转移(smFRET)测量重叠的 MD 模拟,该模拟测量了氨基酸结合蛋白 LIV-BPSS 在亚毫秒分辨率下的测量。采用基于全原子结构的计算效率高的模拟方法,并对其进行了校准,以模拟在秒级时间尺度上的 LIV-BPSS 蛤壳样构象变化的多个循环,考察了这些事件与 smFRET 观察到的事件之间的关系。MD 模拟与 smFRET 测量结果一致,并提供了关于 LIV-BPSS 上荧光团在其附着部位的局部动力学以及荧光团运动与 LIV-BPSS 结构域之间的大尺度构象变化之间的相关性的有价值的信息。我们进一步利用 MD 模拟来解释 smFRET 数据,包括 Förster 半径(R0)和荧光团取向因子(κ2)的确定。我们描述的方法可以很容易地扩展到不同的生化系统,允许解释任何与蛋白质或核糖核蛋白复合物共轭的 FRET 系统,包括那些具有更多构象过程的系统,以及那些实现多色 smFRET 的系统。