Lebrun R, Ross A, Bender S A, Qaiumzadeh A, Baldrati L, Cramer J, Brataas A, Duine R A, Kläui M
Institute for Physics, Johannes Gutenberg-University Mainz, Mainz, Germany.
Graduate School of Excellence Materials Science in Mainz, Mainz, Germany.
Nature. 2018 Sep;561(7722):222-225. doi: 10.1038/s41586-018-0490-7. Epub 2018 Sep 12.
Spintronics relies on the transport of spins, the intrinsic angular momentum of electrons, as an alternative to the transport of electron charge as in conventional electronics. The long-term goal of spintronics research is to develop spin-based, low-dissipation computing-technology devices. Recently, long-distance transport of a spin current was demonstrated across ferromagnetic insulators. However, antiferromagnetically ordered materials, the most common class of magnetic materials, have several crucial advantages over ferromagnetic systems for spintronics applications: antiferromagnets have no net magnetic moment, making them stable and impervious to external fields, and can be operated at terahertz-scale frequencies. Although the properties of antiferromagnets are desirable for spin transport, indirect observations of such transport indicate that spin transmission through antiferromagnets is limited to only a few nanometres. Here we demonstrate long-distance propagation of spin currents through a single crystal of the antiferromagnetic insulator haematite (α-FeO), the most common antiferromagnetic iron oxide, by exploiting the spin Hall effect for spin injection. We control the flow of spin current across a haematite-platinum interface-at which spins accumulate, generating the spin current-by tuning the antiferromagnetic resonance frequency using an external magnetic field. We find that this simple antiferromagnetic insulator conveys spin information parallel to the antiferromagnetic Néel order over distances of more than tens of micrometres. This mechanism transports spins as efficiently as the most promising complex ferromagnets. Our results pave the way to electrically tunable, ultrafast, low-power, antiferromagnetic-insulator-based spin-logic devices that operate without magnetic fields at room temperature.
自旋电子学依赖于电子的固有角动量——自旋的传输,以此作为传统电子学中电子电荷传输的替代方式。自旋电子学研究的长期目标是开发基于自旋的、低功耗的计算技术设备。最近,人们展示了自旋电流在铁磁绝缘体中的长距离传输。然而,反铁磁有序材料作为最常见的一类磁性材料,在自旋电子学应用方面比铁磁系统具有几个关键优势:反铁磁体没有净磁矩,这使得它们稳定且不受外部磁场影响,并且可以在太赫兹频率范围内运行。尽管反铁磁体的特性对于自旋传输是理想的,但对这种传输的间接观察表明,通过反铁磁体的自旋传输仅限于几纳米。在这里,我们通过利用自旋霍尔效应进行自旋注入,展示了自旋电流在最常见的反铁磁氧化铁——赤铁矿(α - Fe₂O₃)单晶中的长距离传播。我们通过使用外部磁场调节反铁磁共振频率,来控制自旋电流在赤铁矿 - 铂界面的流动——在该界面处自旋积累,从而产生自旋电流。我们发现,这种简单的反铁磁绝缘体能够在超过几十微米的距离上,平行于反铁磁奈尔序传递自旋信息。这种机制传输自旋的效率与最有前景的复杂铁磁体一样高。我们的结果为室温下无需磁场运行的、电可调谐、超快、低功耗、基于反铁磁绝缘体的自旋逻辑器件铺平了道路。