Suppr超能文献

基于跳跃知识的时空图卷积网络的自动睡眠分期分类。

Jumping Knowledge Based Spatial-Temporal Graph Convolutional Networks for Automatic Sleep Stage Classification.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:1464-1472. doi: 10.1109/TNSRE.2022.3176004. Epub 2022 Jun 3.

Abstract

A novel jumping knowledge spatial-temporal graph convolutional network (JK-STGCN) is proposed in this paper to classify sleep stages. Based on this method, different types of multi-channel bio-signals, including electroencephalography (EEG), electromyogram (EMG), electrooculogram (EOG), and electrocardiogram (ECG) are utilized to classify sleep stages, after extracting features by a standard convolutional neural network (CNN) named FeatureNet. Intrinsic connections among different bio-signal channels from the identical epoch and neighboring epochs can be obtained through two adaptive adjacency matrices learning methods. A jumping knowledge spatial-temporal graph convolution module helps the JK-STGCN model to extract spatial features from the graph convolutions efficiently and temporal features are extracted from its common standard convolutions to learn the transition rules among sleep stages. Experimental results on the ISRUC-S3 dataset showed that the overall accuracy achieved 0.831 and the F1-score and Cohen kappa reached 0.814 and 0.782, respectively, which are the competitive classification performance with the state-of-the-art baselines. Further experiments on the ISRUC-S3 dataset are also conducted to evaluate the execution efficiency of the JK-STGCN model. The training time on 10 subjects is 2621s and the testing time on 50 subjects is 6.8s, which indicates its highest calculation speed compared with the existing high-performance graph convolutional networks and U-Net architecture algorithms. Experimental results on the ISRUC-S1 dataset also demonstrate its generality, whose accuracy, F1-score, and Cohen kappa achieve 0.820, 0.798, and 0.767 respectively.

摘要

本文提出了一种新的跳跃式知识时空图卷积网络(JK-STGCN),用于睡眠阶段分类。基于该方法,利用不同类型的多通道生物信号,包括脑电图(EEG)、肌电图(EMG)、眼电图(EOG)和心电图(ECG),通过标准卷积神经网络(CNN)FeatureNet 提取特征后,对睡眠阶段进行分类。通过两种自适应邻接矩阵学习方法,可以获得同一时期和相邻时期不同生物信号通道之间的内在联系。跳跃知识时空图卷积模块有助于 JK-STGCN 模型从图卷积中有效地提取空间特征,并从其常见的标准卷积中提取时间特征,以学习睡眠阶段之间的转换规则。在 ISRUC-S3 数据集上的实验结果表明,整体准确率达到 0.831,F1 得分和 Cohen kappa 分别达到 0.814 和 0.782,与最先进的基线相比具有竞争力的分类性能。还在 ISRUC-S3 数据集上进行了进一步的实验,以评估 JK-STGCN 模型的执行效率。在 10 个受试者上的训练时间为 2621s,在 50 个受试者上的测试时间为 6.8s,与现有的高性能图卷积网络和 U-Net 架构算法相比,其计算速度最高。在 ISRUC-S1 数据集上的实验结果也证明了其通用性,其准确率、F1 得分和 Cohen kappa 分别达到 0.820、0.798 和 0.767。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验