Suppr超能文献

用于精确睡眠阶段分类的多模态生理时频特征提取网络

[Multi-modal physiological time-frequency feature extraction network for accurate sleep stage classification].

作者信息

Hu Kailei, Chen Jingxia, Zhang Pengwei, Xue Wen, Xie Jia

机构信息

School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Feb 25;41(1):26-33. doi: 10.7507/1001-5515.202306010.

Abstract

Sleep stage classification is essential for clinical disease diagnosis and sleep quality assessment. Most of the existing methods for sleep stage classification are based on single-channel or single-modal signal, and extract features using a single-branch, deep convolutional network, which not only hinders the capture of the diversity features related to sleep and increase the computational cost, but also has a certain impact on the accuracy of sleep stage classification. To solve this problem, this paper proposes an end-to-end multi-modal physiological time-frequency feature extraction network (MTFF-Net) for accurate sleep stage classification. First, multi-modal physiological signal containing electroencephalogram (EEG), electrocardiogram (ECG), electrooculogram (EOG) and electromyogram (EMG) are converted into two-dimensional time-frequency images containing time-frequency features by using short time Fourier transform (STFT). Then, the time-frequency feature extraction network combining multi-scale EEG compact convolution network (Ms-EEGNet) and bidirectional gated recurrent units (Bi-GRU) network is used to obtain multi-scale spectral features related to sleep feature waveforms and time series features related to sleep stage transition. According to the American Academy of Sleep Medicine (AASM) EEG sleep stage classification criterion, the model achieved 84.3% accuracy in the five-classification task on the third subgroup of the Institute of Systems and Robotics of the University of Coimbra Sleep Dataset (ISRUC-S3), with 83.1% macro F1 score value and 79.8% Cohen's Kappa coefficient. The experimental results show that the proposed model achieves higher classification accuracy and promotes the application of deep learning algorithms in assisting clinical decision-making.

摘要

睡眠阶段分类对于临床疾病诊断和睡眠质量评估至关重要。现有的大多数睡眠阶段分类方法基于单通道或单模态信号,使用单分支深度卷积网络提取特征,这不仅阻碍了与睡眠相关的多样特征的捕获,增加了计算成本,还对睡眠阶段分类的准确性有一定影响。为了解决这个问题,本文提出了一种用于准确睡眠阶段分类的端到端多模态生理时频特征提取网络(MTFF-Net)。首先,通过短时傅里叶变换(STFT)将包含脑电图(EEG)、心电图(ECG)、眼电图(EOG)和肌电图(EMG)的多模态生理信号转换为包含时频特征的二维时频图像。然后,使用结合多尺度脑电图紧凑卷积网络(Ms-EEGNet)和双向门控循环单元(Bi-GRU)网络的时频特征提取网络来获取与睡眠特征波形相关的多尺度频谱特征和与睡眠阶段转换相关的时间序列特征。根据美国睡眠医学学会(AASM)的脑电图睡眠阶段分类标准,该模型在科英布拉大学系统与机器人研究所睡眠数据集(ISRUC-S3)第三子组的五类分类任务中达到了84.3%的准确率,宏F1分数值为83.1%,科恩卡帕系数为79.8%。实验结果表明,所提出的模型实现了更高的分类准确率,并促进了深度学习算法在辅助临床决策中的应用。

相似文献

2
MixSleepNet: A Multi-Type Convolution Combined Sleep Stage Classification Model.MixSleepNet:一种多类型卷积组合的睡眠分期分类模型。
Comput Methods Programs Biomed. 2024 Feb;244:107992. doi: 10.1016/j.cmpb.2023.107992. Epub 2023 Dec 27.
3
MVF-SleepNet: Multi-View Fusion Network for Sleep Stage Classification.MVF-睡眠网络:用于睡眠阶段分类的多视图融合网络
IEEE J Biomed Health Inform. 2024 May;28(5):2485-2495. doi: 10.1109/JBHI.2022.3208314. Epub 2024 May 6.
7
Multi-Modal Sleep Stage Classification With Two-Stream Encoder-Decoder.基于双流编解码器的多模态睡眠分期。
IEEE Trans Neural Syst Rehabil Eng. 2024;32:2096-2105. doi: 10.1109/TNSRE.2024.3394738.

本文引用的文献

1
An Improved Neural Network Based on SENet for Sleep Stage Classification.基于 SENet 的改进神经网络在睡眠阶段分类中的应用。
IEEE J Biomed Health Inform. 2022 Oct;26(10):4948-4956. doi: 10.1109/JBHI.2022.3157262. Epub 2022 Oct 4.
5
Predicting Human Intention-Behavior Through EEG Signal Analysis Using Multi-Scale CNN.通过使用多尺度 CNN 分析 EEG 信号预测人类意图-行为。
IEEE/ACM Trans Comput Biol Bioinform. 2021 Sep-Oct;18(5):1722-1729. doi: 10.1109/TCBB.2020.3039834. Epub 2021 Oct 7.
9
A Novel Multi-Class EEG-Based Sleep Stage Classification System.一种基于多类脑电的新型睡眠分期分类系统。
IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):84-95. doi: 10.1109/TNSRE.2017.2776149.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验