Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721.
Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia.
Proc Natl Acad Sci U S A. 2022 May 24;119(21):e2117349119. doi: 10.1073/pnas.2117349119. Epub 2022 May 18.
The Rhodopsin family of G-protein–coupled receptors (GPCRs) comprises the targets of nearly a third of all pharmaceuticals. Despite structural water present in GPCR X-ray structures, the physiological relevance of these solvent molecules to rhodopsin signaling remains unknown. Here, we show experimental results consistent with the idea that rhodopsin activation in lipid membranes is coupled to bulk water movements into the protein. To quantify hydration changes, we measured reversible shifting of the metarhodopsin equilibrium due to osmotic stress using an extensive series of polyethylene glycol (PEG) osmolytes. We discovered clear evidence that light activation entails a large influx of bulk water (∼80–100 molecules) into the protein, giving insight into GPCR activation mechanisms. Various size polymer osmolytes directly control rhodopsin activation, in which large solutes are excluded from rhodopsin and dehydrate the protein, favoring the inactive state. In contrast, small osmolytes initially forward shift the activation equilibrium until a quantifiable saturation point is reached, similar to gain-of-function protein mutations. For the limit of increasing osmolyte size, a universal response of rhodopsin to osmotic stress is observed, suggesting it adopts a dynamic, hydrated sponge-like state upon photoactivation. Our results demand a rethinking of the role of water dynamics in modulating various intermediates in the GPCR energy landscape. We propose that besides bound water, an influx of bulk water plays a necessary role in establishing the active GPCR conformation that mediates signaling.
G 蛋白偶联受体 (GPCR) 中的视紫红质家族包含了近三分之一的药物靶点。尽管 GPCR X 射线结构中存在结构水,但这些溶剂分子对视紫红质信号转导的生理相关性尚不清楚。在这里,我们展示了与以下观点一致的实验结果,即在脂质膜中,视紫红质的激活与大量水分子进入蛋白质有关。为了定量测量水合变化,我们使用一系列广泛的聚乙二醇 (PEG) 渗透剂来测量渗透压应激下视黄醛平衡的可逆移动。我们发现了明确的证据表明,光激活会导致大量的 bulk water(~80-100 个分子)进入蛋白质,从而深入了解 GPCR 激活机制。各种大小的聚合物渗透剂直接控制视紫红质的激活,其中大溶质被排除在视紫红质之外并使蛋白质脱水,有利于非活性状态。相比之下,小渗透剂最初会向前移动激活平衡,直到达到可量化的饱和点,类似于获得功能的蛋白质突变。对于渗透剂尺寸不断增加的极限,视紫红质对渗透压应激的反应是一致的,这表明它在光激活后会采取一种动态的、水合的海绵状状态。我们的结果要求重新思考水动力学在调节 GPCR 能量景观中的各种中间物的作用。我们提出,除了结合水之外,大量水的流入在建立介导信号转导的活性 GPCR 构象中起着必要的作用。