Grossfield Alan, Pitman Michael C, Feller Scott E, Soubias Olivier, Gawrisch Klaus
IBM TJ Watson Research Center, 1101 Kitchawan Road, PO Box 218, Yorktown Heights, NY 10598, USA.
J Mol Biol. 2008 Aug 29;381(2):478-86. doi: 10.1016/j.jmb.2008.05.036. Epub 2008 May 22.
Rhodopsin, the membrane protein responsible for dim-light vision, until recently was the only G-protein-coupled receptor (GPCR) with a known crystal structure. As a result, there is enormous interest in studying its structure, dynamics, and function. Here we report the results of three all-atom molecular dynamics simulations, each at least 1.5 micros, which predict that substantial changes in internal hydration play a functional role in rhodopsin activation. We confirm with (1)H magic angle spinning NMR that the increased hydration is specific to the metarhodopsin-I intermediate. The internal water molecules interact with several conserved residues, suggesting that changes in internal hydration may be important during the activation of other GPCRs. The results serve to illustrate the synergism of long-time-scale molecular dynamics simulations and NMR in enhancing our understanding of GPCR function.
视紫红质是负责暗光视觉的膜蛋白,直到最近它还是唯一具有已知晶体结构的G蛋白偶联受体(GPCR)。因此,人们对研究其结构、动力学和功能有着极大的兴趣。在此,我们报告了三个全原子分子动力学模拟的结果,每个模拟至少持续1.5微秒,这些模拟预测内部水合作用的显著变化在视紫红质激活中发挥功能作用。我们通过(1)H魔角旋转核磁共振证实,水合作用的增加特定于视紫红质-I中间体。内部水分子与几个保守残基相互作用,这表明内部水合作用的变化在其他GPCR激活过程中可能很重要。这些结果有助于说明长时间尺度分子动力学模拟和核磁共振在增强我们对GPCR功能理解方面的协同作用。