Suppr超能文献

翻译:一种基于收益的方法,可从参考数据集促进单细胞 AC-Seq 数据分析。

Translator: A fer earning Approach to Facilitate Single-Cell AC-Seq Data Analysis frm eference Dataset.

机构信息

Department of Computer Science, University of California, Irvine, California, USA.

Department of Neuroscience, School of Medicine, Yale University, New Haven, Connecticut, USA.

出版信息

J Comput Biol. 2022 Jul;29(7):619-633. doi: 10.1089/cmb.2021.0596. Epub 2022 May 17.

Abstract

Recent advances in single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) have allowed simultaneous epigenetic profiling over thousands of individual cells to dissect the cellular heterogeneity and elucidate regulatory mechanisms at the finest possible resolution. However, scATAC-seq is challenging to model computationally due to the ultra-high dimensionality, low signal-to-noise ratio, complex feature interactions, and high vulnerability to various confounding factors. In this study, we present Translator, an efficient transfer learning approach to capture generalizable chromatin interactions from high-quality (HQ) reference scATAC-seq data to obtain robust cell representations in low-to-moderate quality target scATAC-seq data. We applied Translator on various simulated and real scATAC-seq datasets and demonstrated that Translator could learn more biologically meaningful cell representations than other methods by incorporating information learned from the reference data, thus facilitating various downstream analyses such as clustering and motif enrichment measurements. Moreover, Translator's block-wise deep learning framework can handle nonlinear relationships with restricted connections using fewer parameters to boost computational efficiency through Graphics Processing Unit (GPU) parallelism. Finally, we have implemented Translator as a free software package available for the community to leverage large-scale, HQ reference data to study target scATAC-seq data.

摘要

近年来,转座酶可及染色质测序(scATAC-seq)的单细胞测序技术取得了进展,能够同时对数千个单个细胞进行表观遗传谱分析,从而在尽可能精细的分辨率下解析细胞异质性并阐明调控机制。然而,由于超高维性、低信噪比、复杂特征相互作用以及对各种混杂因素的高度敏感性,scATAC-seq 在计算上具有挑战性。在本研究中,我们提出了 Translator,这是一种有效的迁移学习方法,可以从高质量(HQ)参考 scATAC-seq 数据中捕获可推广的染色质相互作用,从而在低到中等质量的目标 scATAC-seq 数据中获得稳健的细胞表示。我们将 Translator 应用于各种模拟和真实的 scATAC-seq 数据集,并证明 Translator 可以通过整合来自参考数据的信息来学习更具生物学意义的细胞表示,从而促进各种下游分析,如聚类和基序富集测量。此外,Translator 的分块式深度学习框架可以使用较少的参数处理具有受限连接的非线性关系,通过图形处理单元(GPU)并行化提高计算效率。最后,我们已经将 Translator 实现为一个免费的软件包,供社区利用大规模的 HQ 参考数据来研究目标 scATAC-seq 数据。

相似文献

7
simATAC: a single-cell ATAC-seq simulation framework.simATAC:单细胞 ATAC-seq 模拟框架。
Genome Biol. 2021 Mar 4;22(1):74. doi: 10.1186/s13059-021-02270-w.

本文引用的文献

1
Single-cell chromatin state analysis with Signac.使用 Signac 进行单细胞染色质状态分析。
Nat Methods. 2021 Nov;18(11):1333-1341. doi: 10.1038/s41592-021-01282-5. Epub 2021 Nov 1.
5
Integrated analysis of multimodal single-cell data.多模态单细胞数据的综合分析。
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验