Xu Siwei, Liu Junhao, Zhang Jing
University of California, Irvine, Irvine, California, USA.
Proc ACM Int Conf Inf Knowl Manag. 2024 Oct;2024:2722-2731. doi: 10.1145/3627673.3679576. Epub 2024 Oct 21.
Single-cell sequencing technologies have revolutionized genomics by enabling the simultaneous profiling of various molecular modalities within individual cells. Their integration, especially cross-modality translation, offers deep insights into cellular regulatory mechanisms. Many methods have been developed for cross-modality translation, but their reliance on scarce high-quality co-assay data limits their applicability. Addressing this, we introduce scACT, a deep generative model designed to extract cross-modality biological insights from unpaired single-cell data. scACT tackles three major challenges: aligning unpaired multi-modal data via adversarial training, facilitating cross-modality translation without prior knowledge via cycle-consistent training, and enabling interpretable regulatory interconnections explorations via in-silico perturbations. To test its performance, we applied scACT on diverse single-cell datasets and found it outperformed existing methods in all three tasks. Finally, we have developed scACT as an individual open-source software package to advance single-cell omics data processing and analysis within the research community.
单细胞测序技术通过能够同时分析单个细胞内的各种分子模式,彻底改变了基因组学。它们的整合,尤其是跨模式翻译,为细胞调节机制提供了深入的见解。已经开发了许多用于跨模式翻译的方法,但它们对稀缺的高质量联合分析数据的依赖限制了它们的适用性。为了解决这个问题,我们引入了scACT,这是一种深度生成模型,旨在从未配对的单细胞数据中提取跨模式生物学见解。scACT解决了三个主要挑战:通过对抗训练对齐未配对的多模态数据,通过循环一致训练在没有先验知识的情况下促进跨模式翻译,以及通过计算机模拟扰动实现可解释的调节互连探索。为了测试其性能,我们将scACT应用于各种单细胞数据集,发现它在所有三项任务中均优于现有方法。最后,我们将scACT开发为一个独立的开源软件包,以推动研究社区内的单细胞组学数据处理和分析。