Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba, 263-8555, Japan.
Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), Chiba, 263-8555, Japan.
Redox Biol. 2022 Jul;53:102337. doi: 10.1016/j.redox.2022.102337. Epub 2022 May 13.
Recent studies demonstrate that redox imbalance of NAD/NADH and NADP/NADPH pairs due to impaired respiration may trigger two "hidden" metabolic pathways on the crossroad between mitochondrial dysfunction, senescence, and proliferation: "β-oxidation shuttle" and "hydride transfer complex (HTC) cycle". The "β-oxidation shuttle" induces NAD/NADH redox imbalance in mitochondria, while HTC cycle maintains the redox balance of cytosolic NAD/NADH, increasing the redox disbalance of NADP/NADPH. Senescence appears to depend on high cytoplasmic NADH but low NADPH, while proliferation depends on high cytoplasmic NAD and NADPH that are under mitochondrial control. Thus, activating or deactivating the HTC cycle can be crucial to cell fate - senescence or proliferation. These pathways are a source of enormous cataplerosis. They support the production of large amounts of NADPH and intermediates for lipid synthesis and membrane biogenesis, as well as for DNA synthesis.
最近的研究表明,由于呼吸作用受损导致的 NAD/NADH 和 NADP/NADPH 对的氧化还原失衡,可能会触发线粒体功能障碍、衰老和增殖之间的交叉路口的两条“隐藏”代谢途径:“β-氧化穿梭”和“氢转移复合物 (HTC) 循环”。“β-氧化穿梭”在线粒体中诱导 NAD/NADH 氧化还原失衡,而 HTC 循环维持细胞质 NAD/NADH 的氧化还原平衡,增加 NADP/NADPH 的氧化还原失衡。衰老似乎依赖于高细胞质 NADH 但低 NADPH,而增殖依赖于受线粒体控制的高细胞质 NAD 和 NADPH。因此,激活或失活 HTC 循环对于细胞命运——衰老或增殖至关重要。这些途径是巨大的脱羧作用的来源。它们支持大量 NADPH 的产生以及脂质合成和膜生物发生以及 DNA 合成的中间产物。
Redox Biol. 2017-4
Free Radic Biol Med. 2016-11
J Biol Chem. 2018-3-7
Environ Mol Mutagen. 2025-6
Pharmaceuticals (Basel). 2025-2-27
BMC Pregnancy Childbirth. 2024-12-26
Nat Commun. 2024-8-3
Front Physiol. 2024-1-5
Oxid Med Cell Longev. 2022
iScience. 2020-11-2
Carcinogenesis. 2020-12-31
Trends Cell Biol. 2020-4