INRA, UMR1083, Sciences Pour l'Oenologie, 2 Place Viala, F-34060 Montpellier, France.
Metab Eng. 2012 Jul;14(4):366-79. doi: 10.1016/j.ymben.2012.03.008. Epub 2012 Mar 26.
Controlling the amounts of redox cofactors to manipulate metabolic fluxes is emerging as a useful approach to optimizing byproduct yields in yeast biotechnological processes. Redox cofactors are extensively interconnected metabolites, so predicting metabolite patterns is challenging and requires in-depth knowledge of how the metabolic network responds to a redox perturbation. Our aim was to analyze comprehensively the metabolic consequences of increased cytosolic NADPH oxidation during yeast fermentation. Using a genetic device based on the overexpression of a modified 2,3-butanediol dehydrogenase catalyzing the NADPH-dependent reduction of acetoin into 2,3-butanediol, we increased the NADPH demand to between 8 and 40-fold the anabolic demand. We developed (i) a dedicated constraint-based model of yeast fermentation and (ii) a constraint-based modeling method based on the dynamical analysis of mass distribution to quantify the in vivo contribution of pathways producing NADPH to the maintenance of redox homeostasis. We report that yeast responds to NADPH oxidation through a gradual increase in the flux through the PP and acetate pathways, providing 80% and 20% of the NADPH demand, respectively. However, for the highest NADPH demand, the model reveals a saturation of the PP pathway and predicts an exchange between NADH and NADPH in the cytosol that may be mediated by the glycerol-DHA futile cycle. We also reveal the contribution of mitochondrial shuttles, resulting in a net production of NADH in the cytosol, to fine-tune the NADH/NAD(+) balance. This systems level study helps elucidate the physiological adaptation of yeast to NADPH perturbation. Our findings emphasize the robustness of yeast to alterations in NADPH metabolism and highlight the role of the glycerol-DHA cycle as a redox valve, providing additional NADPH from NADH under conditions of very high demand.
控制氧化还原辅助因子的数量以操纵代谢通量,正在成为优化酵母生物技术过程中副产物产量的一种有用方法。氧化还原辅助因子是广泛相互关联的代谢物,因此预测代谢物模式具有挑战性,需要深入了解代谢网络如何对氧化还原扰动做出反应。我们的目的是全面分析酵母发酵过程中胞质 NADPH 氧化增加的代谢后果。我们使用一种基于过表达经修饰的 2,3-丁二醇脱氢酶的遗传装置,该酶催化 NADPH 依赖性将乙酰基丁酮还原为 2,3-丁二醇,从而增加 NADPH 的需求,使其达到合成代谢需求的 8 至 40 倍。我们开发了 (i) 一种专门的酵母发酵约束模型,以及 (ii) 一种基于质量分布动态分析的约束建模方法,以量化产生 NADPH 的途径对维持氧化还原平衡的体内贡献。我们报告说,酵母通过逐渐增加通过 PP 和乙酸盐途径的通量来应对 NADPH 氧化,分别提供 80%和 20%的 NADPH 需求。然而,对于最高的 NADPH 需求,该模型揭示了 PP 途径的饱和,并预测了细胞质中 NADH 和 NADPH 之间的交换,这可能是由甘油-DHA 无效循环介导的。我们还揭示了线粒体穿梭的贡献,导致细胞质中 NADH 的净产生,以微调 NADH/NAD(+) 平衡。这项系统水平的研究有助于阐明酵母对 NADPH 扰动的生理适应。我们的研究结果强调了酵母对 NADPH 代谢改变的稳健性,并突出了甘油-DHA 循环作为氧化还原阀的作用,在非常高的需求条件下,它可以从 NADH 提供额外的 NADPH。