Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Quebec, QC G1V0A6, Canada.
Department of Chemical Engineering, Laval University, 1065 Avenue de la Médecine, Quebec, QC G1V0A6, Canada; Centre for Nano and Material Sciences, Jain University, Bangalore, 562112, Karnataka, India.
Chemosphere. 2022 Sep;303(Pt 1):134861. doi: 10.1016/j.chemosphere.2022.134861. Epub 2022 May 15.
The use of tetracycline hydrochloride (TCH) for veterinary, human therapy, and agriculture has risen in the past few decades, making it to become one of the most exploited antibiotics. However, TCH residue in the environment is causing issues related to the evolution of antibiotic-resistant bacteria. To address such a problem, photodegradation offers a potential solution to decompose these pollutants in wastewater and thereby mitigates negative environmental impacts. In this context, the research focuses on the use of the rare-earth metal oxide samarium orthovanadate (SmVO) with nanorod structure, coupled with UiO-66-NH for the photocatalytic degradation. Their photocatalytic activity to degrade antibiotic TCH molecules is explored under simulated solar light irradiation. The integration of UiO-66-NH with SmVO enhanced the light absorption, recombination resistance, carrier lifetime (from 0.382 to 0.411 ns) and specific surface area (from 67.17 to 246 m/g) of the composite system as confirmed from multiple analyses. The obtained results further indicated that SmVO/UiO-66-NH nanocomposites could form a direct Z-scheme based heterojunction. Such mechanism of charge transfer leads to the effective degradation of TCH molecules up to 50% in 90 min under solar light, while it is degraded only 30% in the case of bare-SmVO nanorods. In this work, the incorporation of UiO-66-NH positively influences photoelectrochemical properties and improves the overall photoredox properties of SmVO for the degradation of complex compounds like antibiotic TCH molecules. Therefore, UiO-66-NH can be proposed as an effective material to sensitize the rare-earth based photocatalytic material.
盐酸四环素(TCH)在兽医、人类治疗和农业中的应用在过去几十年中有所增加,使其成为使用最广泛的抗生素之一。然而,TCH 残留在环境中,导致与抗生素耐药性细菌进化相关的问题。为了解决这个问题,光降解为分解废水中的这些污染物提供了一种潜在的解决方案,从而减轻了对环境的负面影响。在这种情况下,研究的重点是使用具有纳米棒结构的稀土金属氧化物钐钒酸(SmVO)与 UiO-66-NH 结合,用于光催化降解。在模拟太阳光照射下,研究了它们对降解抗生素 TCH 分子的光催化活性。UiO-66-NH 与 SmVO 的集成增强了光吸收、复合电阻、载流子寿命(从 0.382 到 0.411ns)和复合体系的比表面积(从 67.17 到 246m/g),这从多种分析中得到证实。进一步的研究结果表明,SmVO/UiO-66-NH 纳米复合材料可以形成直接 Z 型异质结。这种电荷转移机制导致 TCH 分子在太阳光下 90 分钟内有效降解 50%,而在 bare-SmVO 纳米棒的情况下仅降解 30%。在这项工作中,UiO-66-NH 的掺入对光电化学性质产生了积极的影响,并提高了 SmVO 的整体光还原性能,从而降解抗生素 TCH 等复杂化合物。因此,UiO-66-NH 可以被提议为一种有效的材料,来敏化基于稀土的光催化材料。