Suppr超能文献

基于监督机器学习算法的骨质疏松性椎体压缩骨折微创椎体后凸成形术后再发骨折风险预测模型的建立与内部验证

Development and Internal Validation of Supervised Machine Learning Algorithm for Predicting the Risk of Recollapse Following Minimally Invasive Kyphoplasty in Osteoporotic Vertebral Compression Fractures.

机构信息

Department of Spine Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China.

Department of Otolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian, China.

出版信息

Front Public Health. 2022 May 2;10:874672. doi: 10.3389/fpubh.2022.874672. eCollection 2022.

Abstract

BACKGROUND

The published literatures indicate that patients with osteoporotic vertebral compression fractures (OVCFs) benefit significantly from percutaneous kyphoplasty (PKP), but this surgical technique is associated with frequent postoperative recollapse, a complication that severely limits long-term postoperative functional recovery.

METHODS

This study retrospectively analyzed single-segment OVCF patients who underwent bilateral PKP at our academic center from January 1, 2017 to September 30, 2019. Comparing the plain films of patients within 3 days after surgery and at the final follow-up, we classified patients with more than 10% loss of sagittal anterior height as the recollapse group. Univariate and multivariate logistic regression analyses were performed to determine the risk factors affecting recollapse after PKP. Based on the logistic regression results, we constructed one support vector machine (SVM) classifier to predict recollapse using machine learning (ML) algorithm. The predictive performance of this prediction model was validated by the receiver operating characteristic (ROC) curve, 10-fold cross validation, and confusion matrix.

RESULTS

Among the 346 consecutive patients (346 vertebral bodies in total), postoperative recollapse was observed in 40 patients (11.56%). The results of the multivariate logistical regression analysis showed that high body mass index (BMI) (Odds ratio [OR]: 2.08, 95% confidence interval [CI]: 1.58-2.72, < 0.001), low bone mineral density (BMD) T-scores (OR: 4.27, 95% CI: 1.55-11.75, = 0.005), presence of intravertebral vacuum cleft (IVC) (OR: 3.10, 95% CI: 1.21-7.99, = 0.019), separated cement masses (OR: 3.10, 95% CI: 1.21-7.99, = 0.019), cranial endplate or anterior cortical wall violation (OR: 0.17, 95% CI: 0.04-0.79, = 0.024), cement-contacted upper endplate alone (OR: 4.39, 95% CI: 1.20-16.08, = 0.025), and thoracolumbar fracture (OR: 6.17, 95% CI: 1.04-36.71, = 0.045) were identified as independent risk factors for recollapse after a kyphoplasty surgery. Furthermore, the evaluation indices demonstrated a superior predictive performance of the constructed SVM model, including mean area under receiver operating characteristic curve (AUC) of 0.81, maximum AUC of 0.85, accuracy of 0.81, precision of 0.89, and sensitivity of 0.98.

CONCLUSIONS

For patients with OVCFs, the risk factors leading to postoperative recollapse were multidimensional. The predictive model we constructed provided insights into treatment strategies targeting secondary recollapse prevention.

摘要

背景

已发表的文献表明,骨质疏松性椎体压缩性骨折(OVCF)患者经皮椎体后凸成形术(PKP)治疗后明显获益,但该手术技术与术后频繁再塌陷相关,这一并发症严重限制了长期术后功能恢复。

方法

本研究回顾性分析了 2017 年 1 月 1 日至 2019 年 9 月 30 日期间在我院行单节段 OVCF 双侧 PKP 的患者。通过比较患者术后 3 天内和最终随访时的平片,将矢状位前柱高度丢失超过 10%的患者归类为再塌陷组。采用单因素和多因素 logistic 回归分析确定影响 PKP 后再塌陷的危险因素。基于 logistic 回归结果,我们构建了一个支持向量机(SVM)分类器,使用机器学习(ML)算法预测再塌陷。通过接受者操作特征(ROC)曲线、10 折交叉验证和混淆矩阵对该预测模型的预测性能进行了验证。

结果

在 346 例连续患者(共 346 个椎体)中,术后发生再塌陷 40 例(11.56%)。多因素 logistic 回归分析结果显示,高体重指数(BMI)(比值比[OR]:2.08,95%置信区间[CI]:1.58-2.72,<0.001)、低骨密度(BMD)T 评分(OR:4.27,95%CI:1.55-11.75,=0.005)、存在椎体内真空裂隙(IVC)(OR:3.10,95%CI:1.21-7.99,=0.019)、分离的水泥块(OR:3.10,95%CI:1.21-7.99,=0.019)、颅终板或前皮质壁侵犯(OR:0.17,95%CI:0.04-0.79,=0.024)、单纯水泥接触上终板(OR:4.39,95%CI:1.20-16.08,=0.025)和胸腰椎骨折(OR:6.17,95%CI:1.04-36.71,=0.045)是 PKP 术后再塌陷的独立危险因素。此外,构建的 SVM 模型的评价指标显示出了更好的预测性能,包括受试者工作特征曲线(ROC)下面积(AUC)均值为 0.81,最大 AUC 为 0.85,准确性为 0.81,精密度为 0.89,灵敏度为 0.98。

结论

对于 OVCF 患者,导致术后再塌陷的危险因素是多方面的。我们构建的预测模型为针对继发性再塌陷预防的治疗策略提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e31/9108356/2b7774a3ac32/fpubh-10-874672-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验