Suppr超能文献

一种用于预测骨质疏松性椎体压缩骨折经皮椎体后凸成形术后残余腰背痛的列线图。

A nomogram for predicting residual low back pain after percutaneous kyphoplasty in osteoporotic vertebral compression fractures.

作者信息

Lin Miaoman, Wen Xuemei, Huang Zongwei, Huang Wei, Zhang Hao, Huang Xingxing, Yang Cunheng, Wang Fuming, Gao Junxiao, Zhang Meng, Yu Xiaobing

机构信息

Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, No.6, Jiefang Street, Dalian, Liaoning Province, 116001, China.

Department of Orthopaedics, West China Xiamen Hospital of Sichuan University, No.699, West Jinyuan Road, Xingbin Street, Xiamen, Fujian Province, 361022, China.

出版信息

Osteoporos Int. 2023 Apr;34(4):749-762. doi: 10.1007/s00198-023-06681-2. Epub 2023 Feb 4.

Abstract

UNLABELLED

To establish a risk prediction model for residual low back pain after percutaneous kyphoplasty (PKP) for osteoporotic vertebral compression fractures. We used retrospective data for model construction and evaluated the model using internal validation and temporal external validation and finally concluded that the model had good predictive performance.

INTRODUCTION

The cause of residual low back pain in patients with osteoporotic vertebral compression fractures (OVCFs) after PKP remains highly controversial, and our goal was to investigate the most likely cause and to develop a novel nomogram for the prediction of residual low back pain and to evaluate the predictive performance of the model.

METHODS

The clinical data of 281 patients with OVCFs who underwent PKP at our hospital from July 2019 to July 2020 were reviewed. The optimal logistic regression model was determined by lasso regression for multivariate analysis, thus constructing a nomogram. Bootstrap was used to perfomance the internal validation; receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to assess the predictive performance and clinical utility of the model, respectively. Temporal external validation of the model was also performed using retrospective data from 126 patients who underwent PKP at our hospital from January 2021 to October 2021.

RESULTS

Lasso regression cross-validation showed that the variables with non-zero coefficients were the number of surgical vertebrae, preoperative bone mineral density (pre-BMD), smoking history, thoracolumbar fascia injury (TLFI), intraoperative facet joint injury (FJI), and postoperative incomplete cementing of the fracture line (ICFL). The above factors were included in the multivariate analysis and showed that the pre-BMD, smoking history, TLFI, FJI, and ICFL were independent risk factors for residual low back pain (P < 0.05). The ROC and calibration curve of the original model and temporal external validation indicated a good predictive power of the model. The DCA curve suggested that the model has good clinical practicability.

CONCLUSION

The risk prediction model has good predictive performance and clinical practicability, which can provide a certain basis for clinical decision-making in patients with OVCFs.

摘要

未标注

为建立骨质疏松性椎体压缩骨折经皮椎体后凸成形术(PKP)后残留腰背痛的风险预测模型。我们使用回顾性数据进行模型构建,并通过内部验证和时间外部验证对模型进行评估,最终得出该模型具有良好的预测性能。

引言

PKP术后骨质疏松性椎体压缩骨折(OVCFs)患者残留腰背痛的原因仍存在高度争议,我们的目标是调查最可能的原因,开发一种用于预测残留腰背痛的新型列线图,并评估该模型的预测性能。

方法

回顾了2019年7月至2020年7月在我院接受PKP的281例OVCFs患者的临床资料。通过套索回归进行多变量分析确定最佳逻辑回归模型,从而构建列线图。使用自助法进行内部验证;分别使用受试者工作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)来评估模型的预测性能和临床实用性。还使用2021年1月至2021年10月在我院接受PKP的126例患者的回顾性数据对模型进行时间外部验证。

结果

套索回归交叉验证显示,非零系数变量为手术椎体数量、术前骨密度(pre - BMD)、吸烟史、胸腰筋膜损伤(TLFI)、术中关节突关节损伤(FJI)和术后骨折线骨水泥填充不完全(ICFL)。上述因素纳入多变量分析显示,pre - BMD、吸烟史、TLFI、FJI和ICFL是残留腰背痛的独立危险因素(P < 0.05)。原始模型和时间外部验证的ROC曲线和校准曲线表明该模型具有良好的预测能力。DCA曲线表明该模型具有良好的临床实用性。

结论

该风险预测模型具有良好的预测性能和临床实用性,可为OVCFs患者的临床决策提供一定依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验