Neuroscience Center, School of Medicine, LSUHSC-New Orleans, New Orleans, LA, United States of America.
Department of Integrative Biology, University of Texas-Austin, Austin, TX, United States of America.
PLoS One. 2022 May 19;17(5):e0268383. doi: 10.1371/journal.pone.0268383. eCollection 2022.
For complex communication signals, it is often difficult to identify the information-bearing elements and their parameters necessary to elicit functional behavior. Consequently, it may be difficult to design stimuli that test how neurons contribute to communicative processing. For túngara frogs (Physalaemus pustulosus), however, previous behavioral testing with numerous stimuli showed that a particular frequency modulated (FM) transition in the male call is required to elicit phonotaxis and vocal responses. Modeled on such behavioral experiments, we used awake in vivo recordings of single units in the midbrain to determine if their excitation was biased to behaviorally important FM parameters. Comparisons of stimulus driven action potentials revealed greatest excitation to the behaviorally important FM transition: a downward FM sweep or step that crosses ~600 Hz. Previous studies using long-duration acoustic exposure found immediate early gene expression in many midbrain neurons to be most sensitive to similar FM. However, those data could not determine if FM coding was accomplished by the population and/or individual neurons. Our data suggest both coding schemes could operate, as 1) individual neurons are more sensitive to the behaviorally significant FM transition and 2) when single unit recordings are analytically combined across cells, the combined code can produce high stimulus discrimination (FM vs. noise driven excitation), approaching that found in behavioral discrimination of call vs. noise.
对于复杂的通讯信号,通常难以识别出产生功能行为所需的承载信息的元素及其参数。因此,可能难以设计出能够测试神经元如何参与通讯处理的刺激。然而,对于 túngara 青蛙(Physalaemus pustulosus),先前使用多种刺激进行的大量行为测试表明,雄性鸣叫中特定的调频(FM)转换是引发声趋性和发声反应所必需的。受此类行为实验的启发,我们使用清醒的活体记录中脑的单个单位,以确定它们的兴奋是否偏向于行为上重要的 FM 参数。比较刺激驱动的动作电位显示,对行为上重要的 FM 转换的兴奋最大:向下的 FM 扫频或阶跃,跨越约 600 Hz。先前使用长时程声暴露的研究发现,许多中脑神经元中的早期基因表达对类似的 FM 最为敏感。然而,这些数据无法确定 FM 编码是否是由群体和/或单个神经元完成的。我们的数据表明,这两种编码方案都可能起作用,因为 1)单个神经元对行为上显著的 FM 转换更为敏感,以及 2)当单个单位记录在细胞间进行分析性组合时,组合码可以产生高的刺激辨别(FM 与噪声驱动的兴奋),接近在鸣叫与噪声的行为辨别中发现的辨别。