Suppr超能文献

上位漂变导致蛋白质进化中可预测性逐渐衰减。

Epistatic drift causes gradual decay of predictability in protein evolution.

机构信息

Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA.

Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.

出版信息

Science. 2022 May 20;376(6595):823-830. doi: 10.1126/science.abn6895. Epub 2022 May 19.

Abstract

Epistatic interactions can make the outcomes of evolution unpredictable, but no comprehensive data are available on the extent and temporal dynamics of changes in the effects of mutations as protein sequences evolve. Here, we use phylogenetic deep mutational scanning to measure the functional effect of every possible amino acid mutation in a series of ancestral and extant steroid receptor DNA binding domains. Across 700 million years of evolution, epistatic interactions caused the effects of most mutations to become decorrelated from their initial effects and their windows of evolutionary accessibility to open and close transiently. Most effects changed gradually and without bias at rates that were largely constant across time, indicating a neutral process caused by many weak epistatic interactions. Our findings show that protein sequences drift inexorably into contingency and unpredictability, but that the process is statistically predictable, given sufficient phylogenetic and experimental data.

摘要

上位性相互作用可能使进化的结果变得不可预测,但目前还没有关于蛋白质序列进化时突变影响变化的程度和时间动态的综合数据。在这里,我们使用系统发育深突变扫描来测量一系列祖先和现存类固醇受体 DNA 结合域中每个可能的氨基酸突变的功能效应。在 7 亿年的进化过程中,上位性相互作用导致大多数突变的效应与其最初的效应以及它们的进化可及性窗口从相关性中分离出来,并暂时打开和关闭。大多数效应以大致恒定的速率逐渐且无偏地变化,这表明这是由许多弱上位性相互作用引起的中性过程。我们的研究结果表明,蛋白质序列不可避免地漂移到偶然性和不可预测性中,但如果有足够的系统发育和实验数据,该过程在统计学上是可预测的。

相似文献

1
Epistatic drift causes gradual decay of predictability in protein evolution.
Science. 2022 May 20;376(6595):823-830. doi: 10.1126/science.abn6895. Epub 2022 May 19.
3
Alternative evolutionary histories in the sequence space of an ancient protein.
Nature. 2017 Sep 21;549(7672):409-413. doi: 10.1038/nature23902. Epub 2017 Sep 13.
4
Emergent time scales of epistasis in protein evolution.
Proc Natl Acad Sci U S A. 2024 Oct;121(40):e2406807121. doi: 10.1073/pnas.2406807121. Epub 2024 Sep 26.
5
Biophysical mechanisms for large-effect mutations in the evolution of steroid hormone receptors.
Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11475-80. doi: 10.1073/pnas.1303930110. Epub 2013 Jun 24.
6
Epistasis in protein evolution.
Protein Sci. 2016 Jul;25(7):1204-18. doi: 10.1002/pro.2897. Epub 2016 Feb 28.
7
Epistasis facilitates functional evolution in an ancient transcription factor.
Elife. 2024 May 20;12:RP88737. doi: 10.7554/eLife.88737.
8
Molecular ensembles make evolution unpredictable.
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):11938-11943. doi: 10.1073/pnas.1711927114. Epub 2017 Oct 23.
9
Pervasive contingency and entrenchment in a billion years of Hsp90 evolution.
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4453-4458. doi: 10.1073/pnas.1718133115. Epub 2018 Apr 6.
10
Collective dynamics differentiates functional divergence in protein evolution.
PLoS Comput Biol. 2012;8(3):e1002428. doi: 10.1371/journal.pcbi.1002428. Epub 2012 Mar 29.

引用本文的文献

1
Learning sequence-function relationships with scalable, interpretable Gaussian processes.
bioRxiv. 2025 Aug 19:2025.08.15.670613. doi: 10.1101/2025.08.15.670613.
2
Widespread epistasis shapes RNA polymerase II active site function and evolution.
Nat Commun. 2025 Aug 27;16(1):7993. doi: 10.1038/s41467-025-63304-6.
3
AlphaFold 3 accurately models natural variants of catalase KatA.
Microbiol Spectr. 2025 Sep 2;13(9):e0067025. doi: 10.1128/spectrum.00670-25. Epub 2025 Aug 12.
5
Systematic design and evaluation of artificial CO assimilation pathways.
Synth Syst Biotechnol. 2025 May 28;10(4):1107-1118. doi: 10.1016/j.synbio.2025.05.009. eCollection 2025 Dec.
6
Physical principles underpinning molecular-level protein evolution.
Eur Biophys J. 2025 Jun 26. doi: 10.1007/s00249-025-01776-6.
8
Reconstruction of Ancestral Protein Sequences Using Autoregressive Generative Models.
Mol Biol Evol. 2025 Apr 1;42(4). doi: 10.1093/molbev/msaf070.
10
Evolutionary rewiring of the dynamic network underpinning allosteric epistasis in NS1 of the influenza A virus.
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2410813122. doi: 10.1073/pnas.2410813122. Epub 2025 Feb 20.

本文引用的文献

1
Ensemble epistasis: thermodynamic origins of nonadditivity between mutations.
Genetics. 2021 Aug 26;219(1). doi: 10.1093/genetics/iyab105.
3
A hydrophobic ratchet entrenches molecular complexes.
Nature. 2020 Dec;588(7838):503-508. doi: 10.1038/s41586-020-3021-2. Epub 2020 Dec 9.
4
Genome editing retraces the evolution of toxin resistance in the monarch butterfly.
Nature. 2019 Oct;574(7778):409-412. doi: 10.1038/s41586-019-1610-8. Epub 2019 Oct 2.
5
An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape.
PLoS Genet. 2019 Apr 10;15(4):e1008079. doi: 10.1371/journal.pgen.1008079. eCollection 2019 Apr.
6
Contingency and determinism in evolution: Replaying life's tape.
Science. 2018 Nov 9;362(6415). doi: 10.1126/science.aam5979.
7
Inferring the shape of global epistasis.
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):E7550-E7558. doi: 10.1073/pnas.1804015115. Epub 2018 Jul 23.
8
The genetic landscape of a physical interaction.
Elife. 2018 Apr 11;7:e32472. doi: 10.7554/eLife.32472.
9
Pervasive contingency and entrenchment in a billion years of Hsp90 evolution.
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4453-4458. doi: 10.1073/pnas.1718133115. Epub 2018 Apr 6.
10
Mapping mutational effects along the evolutionary landscape of HIV envelope.
Elife. 2018 Mar 28;7:e34420. doi: 10.7554/eLife.34420.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验