Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
Department of Chemistry, Texas A&M University, College Station, TX, USA.
Nature. 2020 Dec;588(7838):503-508. doi: 10.1038/s41586-020-3021-2. Epub 2020 Dec 9.
Most proteins assemble into multisubunit complexes. The persistence of these complexes across evolutionary time is usually explained as the result of natural selection for functional properties that depend on multimerization, such as intersubunit allostery or the capacity to do mechanical work. In many complexes, however, multimerization does not enable any known function. An alternative explanation is that multimers could become entrenched if substitutions accumulate that are neutral in multimers but deleterious in monomers; purifying selection would then prevent reversion to the unassembled form, even if assembly per se does not enhance biological function. Here we show that a hydrophobic mutational ratchet systematically entrenches molecular complexes. By applying ancestral protein reconstruction and biochemical assays to the evolution of steroid hormone receptors, we show that an ancient hydrophobic interface, conserved for hundreds of millions of years, is entrenched because exposure of this interface to solvent reduces protein stability and causes aggregation, even though the interface makes no detectable contribution to function. Using structural bioinformatics, we show that a universal mutational propensity drives sites that are buried in multimeric interfaces to accumulate hydrophobic substitutions to levels that are not tolerated in monomers. In a database of hundreds of families of multimers, most show signatures of long-term hydrophobic entrenchment. It is therefore likely that many protein complexes persist because a simple ratchet-like mechanism entrenches them across evolutionary time, even when they are functionally gratuitous.
大多数蛋白质组装成多亚基复合物。这些复合物在进化时间上的持续存在通常可以用自然选择来解释,因为它们具有依赖多聚化的功能特性,例如亚基间变构或机械做功的能力。然而,在许多复合物中,多聚化并不能赋予任何已知的功能。另一种解释是,如果在多聚体中积累的取代是中性的,但在单体中是有害的,那么多聚体可能会变得根深蒂固;然后,纯化选择将阻止返回到未组装的形式,即使组装本身不会增强生物功能。在这里,我们表明疏水突变棘轮系统地使分子复合物根深蒂固。通过对甾体激素受体的进化应用祖先蛋白重建和生化测定,我们表明,一个古老的疏水界面,保守了数亿年,是根深蒂固的,因为暴露于该界面的溶剂会降低蛋白质稳定性并导致聚集,尽管该界面对功能没有任何可检测的贡献。通过结构生物信息学,我们表明,一个普遍的突变倾向驱动多聚体界面中埋藏的位点积累疏水取代,达到单体不能容忍的水平。在一个包含数百个多聚体家族的数据库中,大多数家族都显示出长期疏水根深蒂固的特征。因此,许多蛋白质复合物之所以能够持续存在,很可能是因为一种简单的棘轮样机制使它们在进化时间上根深蒂固,即使它们在功能上是多余的。