Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; Department of Bioengineering, Imperial College London, London, UK.
Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany.
Curr Biol. 2022 Jun 20;32(12):2640-2653.e4. doi: 10.1016/j.cub.2022.04.068. Epub 2022 May 18.
In classical neuroscience experiments, neural activity is measured across many identical trials of animals performing simple tasks and is then analyzed, associating neural responses to pre-defined experimental parameters. This type of analysis is not suitable for patterns of behavior that unfold freely, such as play behavior. Here, we attempt an alternative approach for exploratory data analysis on a single-trial level, applicable in more complex and naturalistic behavioral settings in which no two trials are identical. We analyze neural population activity in the prefrontal cortex (PFC) of rats playing hide-and-seek and show that it is possible to discover what aspects of the task are reflected in the recorded activity with a limited number of simultaneously recorded cells (≤ 31). Using hidden Markov models, we cluster population activity in the PFC into a set of neural states, each associated with a pattern of neural activity. Despite high variability in behavior, relating the inferred states to the events of the hide-and-seek game reveals neural states that consistently appear at the same phases of the game. Furthermore, we show that by applying the segmentation inferred from neural data to the animals' behavior, we can explore and discover novel correlations between neural activity and behavior. Finally, we replicate the results in a second dataset and show that population activity in the PFC displays distinct sets of states during playing hide-and-seek and observing others play the game. Overall, our results reveal robust, state-like representations in the rat PFC during unrestrained playful behavior and showcase the applicability of population analyses in naturalistic neuroscience.
在经典的神经科学实验中,通过对动物执行简单任务的许多相同试验进行测量,来分析神经活动,并将神经反应与预定义的实验参数相关联。这种分析方法不适用于自由展开的行为模式,例如游戏行为。在这里,我们尝试在单试水平上进行探索性数据分析的替代方法,适用于更复杂和自然的行为环境,在这些环境中,没有两个试验是相同的。我们分析了玩捉迷藏的大鼠前额叶皮层 (PFC) 的神经群体活动,并表明,通过同时记录的细胞数量有限(≤31 个),有可能发现记录的活动中反映了任务的哪些方面。使用隐马尔可夫模型,我们将 PFC 中的群体活动聚类为一组神经状态,每个状态都与一种神经活动模式相关联。尽管行为存在高度的可变性,但将推断出的状态与捉迷藏游戏的事件相关联,揭示了在游戏的相同阶段始终出现的神经状态。此外,我们表明,通过将从神经数据推断出的分段应用于动物的行为,我们可以探索和发现神经活动与行为之间的新的关联。最后,我们在第二个数据集上复制了结果,并表明 PFC 中的群体活动在玩捉迷藏和观察他人玩游戏时表现出不同的状态集。总体而言,我们的结果揭示了在不受限制的玩耍行为中大鼠 PFC 中存在稳健的、类似状态的表示,并展示了群体分析在自然神经科学中的适用性。