文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

光感受器神经节细胞(ipRGC)刺激对年轻人受光学离焦影响的眼轴长度变化的作用。

The effect of intrinsically photosensitive retinal ganglion cell (ipRGC) stimulation on axial length changes to imposed optical defocus in young adults.

机构信息

Caring Futures Institute, Flinders University, Bedford Park, SA 5042, Australia; College of Nursing and Health Sciences, Optometry and Vision Science, Sturt North, Flinders University, Bedford Park, SA 5042, Australia.

Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Queensland University of Technology, Victoria Park Road, Kelvin Grove 4059, Brisbane, QLD, Australia.

出版信息

J Optom. 2023 Jan-Mar;16(1):53-63. doi: 10.1016/j.optom.2022.04.002. Epub 2022 May 17.


DOI:10.1016/j.optom.2022.04.002
PMID:35589503
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9811374/
Abstract

PURPOSE: The intrinsically photosensitive retinal ganglion cells (ipRGCs) regulate pupil size and circadian rhythms. Stimulation of the ipRGCs using short-wavelength blue light causes a sustained pupil constriction known as the post-illumination pupil response (PIPR). Here we examined the effects of ipRGC stimulation on axial length changes to imposed optical defocus in young adults. MATERIALS AND METHODS: Nearly emmetropic young participants were given either myopic (+3 D, n = 16) or hyperopic (-3 D, n = 17) defocus in their right eye for 2 h. Before and after defocus, a series of axial length measurements for up to 180 s were performed in the right eye using the IOL Master following exposure to 5 s red (625 nm, 3.74 × 10 photons/cm/s) and blue (470 nm, 3.29 × 10 photons/cm/s) stimuli. The pupil measurements were collected from the left eye to track the ipRGC activity. The 6 s and 30 s PIPR, early and late area under the curve (AUC), and time to return to baseline were calculated. RESULTS: The PIPR with blue light was significantly stronger after 2 h of hyperopic defocus as indicated by a lower 6 and 30 s PIPR and a larger early and late AUC (all p<0.05). Short-wavelength ipRGC stimulation also significantly exaggerated the ocular response to hyperopic defocus, causing a significantly greater increase in axial length than that resulting from the hyperopic defocus alone (p = 0.017). Neither wavelength had any effect on axial length with myopic defocus. CONCLUSIONS: These findings suggest an interaction between myopiagenic hyperopic defocus and ipRGC signaling.

摘要

目的:光感受器神经节细胞(ipRGCs)可调节瞳孔大小和昼夜节律。短波长蓝光刺激 ipRGCs 会引起持续的瞳孔收缩,即光刺激后的瞳孔反应(PIPR)。本研究旨在探讨 ipRGC 刺激对年轻人受光学离焦影响的眼轴变化的影响。

材料与方法:将基本正视的年轻参与者右眼给予近视(+3 D,n = 16)或远视(-3 D,n = 17)离焦 2 小时。在离焦前后,右眼使用 IOL Master 进行了长达 180 秒的一系列眼轴测量,在暴露于 5 秒红光(625nm,3.74×10 光子/cm/s)和蓝光(470nm,3.29×10 光子/cm/s)刺激后进行。从左眼收集瞳孔测量值以跟踪 ipRGC 活动。计算 6 秒和 30 秒 PIPR、早期和晚期曲线下面积(AUC)以及恢复到基线的时间。

结果:与远视离焦 2 小时后相比,蓝光刺激后的 PIPR 明显更强,表现为 6 秒和 30 秒 PIPR 更低,早期和晚期 AUC 更大(均 p<0.05)。短波长 ipRGC 刺激也显著夸大了远视离焦的眼部反应,导致眼轴增长明显大于单纯远视离焦(p=0.017)。两种波长对近视离焦均无影响。

结论:这些发现表明,远视性近视离焦与 ipRGC 信号之间存在相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ff/9811374/835578998e50/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ff/9811374/9e7fe0757475/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ff/9811374/9be93fe90218/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ff/9811374/ff940ddceadb/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ff/9811374/fd208603df65/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ff/9811374/835578998e50/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ff/9811374/9e7fe0757475/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ff/9811374/9be93fe90218/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ff/9811374/ff940ddceadb/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ff/9811374/fd208603df65/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56ff/9811374/835578998e50/gr5.jpg

相似文献

[1]
The effect of intrinsically photosensitive retinal ganglion cell (ipRGC) stimulation on axial length changes to imposed optical defocus in young adults.

J Optom. 2023

[2]
The intrinsically photosensitive retinal ganglion cell (ipRGC) mediated pupil response in young adult humans with refractive errors.

J Optom. 2022

[3]
The ipRGC-driven pupil response with light exposure and refractive error in children.

Ophthalmic Physiol Opt. 2018-9

[4]
Immunotoxin-Induced Ablation of the Intrinsically Photosensitive Retinal Ganglion Cells in Rhesus Monkeys.

Front Neurol. 2018-11-27

[5]
Temporal characteristics of melanopsin inputs to the human pupil light reflex.

Vision Res. 2015-2

[6]
Influence of the time of day on axial length and choroidal thickness changes to hyperopic and myopic defocus in human eyes.

Exp Eye Res. 2019-3-26

[7]
Post-illumination pupil response after blue light: Reliability of optimized melanopsin-based phototransduction assessment.

Exp Eye Res. 2015-10

[8]
Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma.

Invest Ophthalmol Vis Sci. 2011-6-21

[9]
Attenuation of short wavelengths alters sleep and the ipRGC pupil response.

Ophthalmic Physiol Opt. 2017-7

[10]
The ipRGC-Driven Pupil Response with Light Exposure, Refractive Error, and Sleep.

Optom Vis Sci. 2018-4

引用本文的文献

[1]
Blue light stimulation of the optic nerve head reduces melatonin levels in rabbit posterior segment.

J Optom. 2024

[2]
Diurnal gene expression patterns in retina and choroid distinguish myopia progression from myopia onset.

PLoS One. 2024

本文引用的文献

[1]
Melanopsin modulates refractive development and myopia.

Exp Eye Res. 2022-1

[2]
The intrinsically photosensitive retinal ganglion cell (ipRGC) mediated pupil response in young adult humans with refractive errors.

J Optom. 2022

[3]
Influence of the time of day on axial length and choroidal thickness changes to hyperopic and myopic defocus in human eyes.

Exp Eye Res. 2019-3-26

[4]
The Method of Silent Substitution for Examining Melanopsin Contributions to Pupil Control.

Front Neurol. 2018-11-27

[5]
Light-dependent pathways for dopaminergic amacrine cell development and function.

Elife. 2018-11-7

[6]
The ipRGC-Driven Pupil Response with Light Exposure, Refractive Error, and Sleep.

Optom Vis Sci. 2018-4

[7]
Dopamine signaling and myopia development: What are the key challenges.

Prog Retin Eye Res. 2017-11

[8]
Melanopsin Phototransduction Contributes to Light-Evoked Choroidal Expansion and Rod L-Type Calcium Channel Function In Vivo.

Invest Ophthalmol Vis Sci. 2016-10-1

[9]
Optical Defocus Rapidly Changes Choroidal Thickness in Schoolchildren.

PLoS One. 2016-8-18

[10]
Effect of Age and Refractive Error on the Melanopsin Mediated Post-Illumination Pupil Response (PIPR).

Sci Rep. 2015-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索