Department of Endocrinology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea.
Department of Ophthalmology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Sci Rep. 2022 May 19;12(1):8476. doi: 10.1038/s41598-022-12369-0.
We sought to evaluate the performance of machine learning prediction models for identifying vision-threatening diabetic retinopathy (VTDR) in patients with type 2 diabetes mellitus using only medical data from data warehouse. This is a multicenter electronic medical records review study. Patients with type 2 diabetes screened for diabetic retinopathy and followed-up for 10 years were included from six referral hospitals sharing same electronic medical record system (n = 9,102). Patient demographics, laboratory results, visual acuities (VAs), and occurrence of VTDR were collected. Prediction models for VTDR were developed using machine learning models. F1 score, accuracy, specificity, and area under the receiver operating characteristic curve (AUC) were analyzed. Machine learning models revealed F1 score, accuracy, specificity, and AUC values of up 0.89, 0.89.0.95, and 0.96 during training. The trained models predicted the occurrence of VTDR at 10-year with F1 score, accuracy, and specificity up to 0.81, 0.70, and 0.66, respectively, on test set. Important predictors included baseline VA, duration of diabetes treatment, serum level of glycated hemoglobin and creatinine, estimated glomerular filtration rate and blood pressure. The models could predict the long-term occurrence of VTDR with fair performance. Although there might be limitation due to lack of funduscopic findings, prediction models trained using medical data can facilitate proper referral of subjects at high risk for VTDR to an ophthalmologist from primary care.
我们旨在评估仅使用来自数据仓库的医疗数据,通过机器学习预测模型识别 2 型糖尿病患者威胁视力的糖尿病视网膜病变(VTDR)的性能。这是一项多中心电子病历回顾研究。纳入了来自 6 家共享相同电子病历系统的转诊医院接受糖尿病视网膜病变筛查并随访 10 年的 2 型糖尿病患者(n=9102)。收集了患者的人口统计学、实验室结果、视力(VA)和 VTDR 的发生情况。使用机器学习模型开发了 VTDR 的预测模型。分析了 F1 评分、准确性、特异性和受试者工作特征曲线(ROC)下的面积(AUC)。机器学习模型在训练期间的 F1 评分、准确性、特异性和 AUC 值高达 0.89、0.89、0.95 和 0.96。经过训练的模型在测试集上预测 10 年 VTDR 的发生,F1 评分、准确性和特异性分别高达 0.81、0.70 和 0.66。重要的预测因素包括基线 VA、糖尿病治疗持续时间、糖化血红蛋白和肌酐血清水平、估计肾小球滤过率和血压。这些模型可以预测 VTDR 的长期发生,具有较好的性能。尽管由于缺乏眼底检查结果可能存在局限性,但使用医疗数据训练的预测模型可以促进将高危 VTDR 患者从初级保健机构转介给眼科医生。