Suppr超能文献

基于超广角扫描激光检眼镜图像检测糖尿病视网膜病变:一项多中心深度学习分析

Detection of Diabetic Retinopathy from Ultra-Widefield Scanning Laser Ophthalmoscope Images: A Multicenter Deep Learning Analysis.

作者信息

Tang Fangyao, Luenam Phoomraphee, Ran An Ran, Quadeer Ahmed Abdul, Raman Rajiv, Sen Piyali, Khan Rehana, Giridhar Anantharaman, Haridas Swathy, Iglicki Matias, Zur Dinah, Loewenstein Anat, Negri Hermino P, Szeto Simon, Lam Bryce Ka Yau, Tham Clement C, Sivaprasad Sobha, Mckay Matthew, Cheung Carol Y

机构信息

Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.

Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.

出版信息

Ophthalmol Retina. 2021 Nov;5(11):1097-1106. doi: 10.1016/j.oret.2021.01.013. Epub 2021 Feb 1.

Abstract

PURPOSE

To develop a deep learning (DL) system that can detect referable diabetic retinopathy (RDR) and vision-threatening diabetic retinopathy (VTDR) from images obtained on ultra-widefield scanning laser ophthalmoscope (UWF-SLO).

DESIGN

Observational, cross-sectional study.

PARTICIPANTS

A total of 9392 UWF-SLO images of 1903 eyes from 1022 subjects with diabetes from Hong Kong, the United Kingdom, India, and Argentina.

METHODS

All images were labeled according to the presence or absence of RDR and the presence or absence of VTDR. Labeling was performed by retina specialists from fundus examination, according to the International Clinical Diabetic Retinopathy Disease Severity Scale. Three convolutional neural networks (ResNet50) were trained with a transfer-learning procedure for assessing gradability and identifying VTDR and RDR. External validation was performed on 4 datasets spanning different geographical regions.

MAIN OUTCOME MEASURES

Area under the receiver operating characteristic curve (AUROC); area under the precision-recall curve (AUPRC); sensitivity, specificity, and accuracy of the DL system in gradability assessment; and detection of RDR and VTDR.

RESULTS

For gradability assessment, the system achieved an AUROC of 0.923 (95% confidence interval [CI], 0.892-0.947), sensitivity of 86.5% (95% CI, 77.6-92.8), and specificity of 82.1% (95% CI, 77.3-86.2) for the primary validation dataset, and >0.82 AUROCs, >79.6% sensitivity, and >70.4% specificity for the geographical external validation datasets. For detecting RDR and VTDR, the AUROCs were 0.981 (95% CI, 0.977-0.984) and 0.966 (95% CI, 0.961-0.971), with sensitivities of 94.9% (95% CI, 92.3-97.9) and 87.2% (95% CI, 81.5-91.6), specificities of 95.1% (95% CI, 90.6-97.9) and 95.8% (95% CI, 93.3-97.6), and positive predictive values (PPVs) of 98.0% (95% CI, 96.1-99.0) and 91.1% (95% CI, 86.3-94.3) for the primary validation dataset, respectively. The AUROCs and accuracies for detecting both RDR and VTDR were >0.9% and >80%, respectively, for the geographical external validation datasets. The AUPRCs were >0.9, and sensitivities, specificities, and PPVs were >80% for the geographical external validation datasets for RDR and VTDR detection.

CONCLUSIONS

The excellent performance achieved with this DL system for image quality assessment and detection of RDR and VTDR in UWF-SLO images highlights its potential as an efficient and effective diabetic retinopathy screening tool.

摘要

目的

开发一种深度学习(DL)系统,该系统能够从超广角扫描激光检眼镜(UWF-SLO)获取的图像中检测出可参考的糖尿病视网膜病变(RDR)和威胁视力的糖尿病视网膜病变(VTDR)。

设计

观察性横断面研究。

参与者

来自中国香港、英国、印度和阿根廷的1022名糖尿病患者的1903只眼睛的9392张UWF-SLO图像。

方法

根据是否存在RDR和是否存在VTDR对所有图像进行标记。标记由眼底检查的视网膜专家根据国际临床糖尿病视网膜病变疾病严重程度量表进行。使用迁移学习程序训练了三个卷积神经网络(ResNet50),用于评估可分级性并识别VTDR和RDR。在跨越不同地理区域的4个数据集上进行了外部验证。

主要观察指标

受试者操作特征曲线下面积(AUROC);精确召回率曲线下面积(AUPRC);DL系统在可分级性评估中的敏感性、特异性和准确性;以及RDR和VTDR的检测。

结果

对于可分级性评估,该系统在主要验证数据集上的AUROC为0.923(95%置信区间[CI],0.892 - 0.947),敏感性为86.5%(95%CI,77.6 - 92.8),特异性为82.1%(95%CI,77.3 - 86.2),对于地理外部验证数据集,AUROC>0.82,敏感性>79.6%,特异性>70.4%。对于检测RDR和VTDR,主要验证数据集的AUROC分别为0.981(95%CI,0.977 - 0.984)和0.966(95%CI,0.961 - 0.971),敏感性分别为94.9%(95%CI,92.3 - 97.9)和87.2%(95%CI,81.5 - 91.6),特异性分别为95.1%(95%CI,90.6 - 97.9)和95.8%(95%CI,93.3 - 97.6),阳性预测值(PPV)分别为98.0%(95%CI,96.1 - 99.0)和91.1%(95%CI,86.3 - 94.3)。对于地理外部验证数据集,检测RDR和VTDR的AUROC和准确率分别>0.9%和>80%。对于地理外部验证数据集的RDR和VTDR检测,AUPRC>0.9,敏感性、特异性和PPV>80%。

结论

该DL系统在UWF-SLO图像的图像质量评估以及RDR和VTDR检测方面取得的优异性能突出了其作为一种高效且有效的糖尿病视网膜病变筛查工具的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验