Suppr超能文献

预测 2 型糖尿病患者的视力威胁性糖尿病视网膜病变:系统评价、荟萃分析和前瞻性验证研究。

Predicting vision-threatening diabetic retinopathy in patients with type 2 diabetes mellitus: Systematic review, meta-analysis, and prospective validation study.

机构信息

Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Department of Ophthalmology, The People's Hospital of Jiangmen, Southern Medical University, Jiangmen, China.

出版信息

J Glob Health. 2024 Oct 11;14:04192. doi: 10.7189/jogh.14.04192.

Abstract

BACKGROUND

Delayed diagnosis and treatment of vision-threatening diabetic retinopathy (VTDR) is a common cause of visual impairment in individuals with type 2 diabetes mellitus (T2DM). Identification of VTDR predictors is the key to early prevention and intervention, but the predictors from previous studies are inconsistent. This study aims to conduct a systematic review and meta-analysis of the existing evidence for VTDR predictors, then to develop a risk prediction model after quantitatively summarising the predictors across studies, and finally to validate the model with two Chinese cohorts.

METHODS

We systematically retrieved cohort studies that reported predictors of VTDR in T2DM patients from PubMed, Ovid, Embase, Scopus, Cochrane Library, Web of Science, and ProQuest from their inception to December 2023. We extracted predictors reported in two or more studies and combined their corresponding relative risk (RRs) using meta-analysis to obtain pooled RRs. We only selected predictors with statistically significant pooled RRs to develop the prediction model. We also prospectively collected two Chinese cohorts of T2DM patients as the validation set and assessed the discrimination and calibration performance of the prediction model by the time-dependent ROC curve and calibration curve.

RESULTS

Twenty-one cohort studies involving 622 490 patients with T2DM and 57 107 patients with VTDR were included in the meta-analysis. Age of diabetes onset, duration of diabetes, glycosylated haemoglobin (HbA1c), estimated glomerular filtration rate (eGFR), hypertension, high albuminuria and diabetic treatment were used to construct the prediction model. We validated the model externally in a prospective multicentre cohort of 555 patients with a median follow-up of 52 months (interquartile range = 39-77). The area under the curve (AUC) of the prediction model was all above 0.8 for 3- to 10-year follow-up periods and different cut-off value of each year provided the optimal balance between sensitivity and specificity. The data points of the calibration curves for each year closely surround the corresponding dashed line.

CONCLUSIONS

The risk prediction model of VTDR has high discrimination and calibration performance based on validation cohorts. Given its demonstrated effectiveness, there is significant potential to expand the utilisation of this model within clinical settings to enhance the detection and management of individuals at high risk of VTDR.

摘要

背景

2 型糖尿病(T2DM)患者视觉威胁性糖尿病视网膜病变(VTDR)的诊断和治疗延误是视力损害的常见原因。识别 VTDR 的预测因素是早期预防和干预的关键,但以往研究的预测因素并不一致。本研究旨在对现有的 VTDR 预测因素进行系统回顾和荟萃分析,然后对研究间的预测因素进行定量总结,建立风险预测模型,最后用两个中国队列进行验证。

方法

我们从 PubMed、Ovid、Embase、Scopus、Cochrane Library、Web of Science 和 ProQuest 系统地检索了从成立到 2023 年 12 月报道 T2DM 患者 VTDR 预测因素的队列研究。我们提取了两项或两项以上研究报道的预测因素,并使用荟萃分析合并其相应的相对风险(RR),得到合并的 RR。我们只选择具有统计学意义的合并 RR 的预测因素来建立预测模型。我们还前瞻性地收集了两个中国 T2DM 患者队列作为验证集,通过时间依赖性 ROC 曲线和校准曲线评估预测模型的区分度和校准性能。

结果

共纳入 21 项队列研究,涉及 622490 例 T2DM 患者和 57107 例 VTDR 患者。纳入研究的预测因素包括糖尿病发病年龄、糖尿病病程、糖化血红蛋白(HbA1c)、估算肾小球滤过率(eGFR)、高血压、白蛋白尿和糖尿病治疗。我们使用这些预测因素建立了预测模型,并在一个前瞻性的多中心队列中进行了外部验证,该队列有 555 例患者,中位随访时间为 52 个月(四分位间距 39-77 个月)。预测模型在 3 至 10 年的随访期内 AUC 均大于 0.8,并且每年不同的截断值在敏感性和特异性之间提供了最佳平衡。每年校准曲线的数据点都紧密围绕着相应的虚线。

结论

该 VTDR 风险预测模型在验证队列中具有较高的区分度和校准性能。鉴于其有效性,在临床环境中推广应用该模型以提高对 VTDR 高危人群的检测和管理具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b0a/11467770/d43a1fe93bdb/jogh-14-04192-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验