Kashima Yuki, Okumura Ko
Department of Physics, Faculty of Science, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan.
ACS Macro Lett. 2014 May 20;3(5):419-422. doi: 10.1021/mz500122v. Epub 2014 Apr 14.
Fracture mechanical properties of a very soft solidified foam of polyethylene with Young's modulus about 1 MPa are studied by changing stretching velocity in a wide range, by using sheets of the material in order to suppress finite-size effects. Unexpectedly, we find that the fracture can be described well by linear elastic fracture mechanics for a given fracture rate in the wide range. This allows a direct determination of velocity-dependent fracture energy of the soft foam. As a result, we find that the fracture energy is composed of a static plastoelastic component and another dynamic viscoelastic component, elucidating a simple physical interpretation of each component and giving guiding principles useful for practical applications to reinforce industrial polymer materials. Furthermore, we introduce a finite stress criterion for fracture that is similar in spirit to the cohesive zone model and, using our data, demonstrate that this stress criterion is consistent with the Griffith's energy balance.
通过在很宽的范围内改变拉伸速度,使用该材料的薄片以抑制有限尺寸效应,研究了杨氏模量约为1MPa的非常软的聚乙烯固化泡沫的断裂力学性能。出乎意料的是,我们发现,在很宽的范围内,对于给定的断裂速率,线性弹性断裂力学能够很好地描述该断裂情况。这使得我们能够直接确定软泡沫的速度依赖型断裂能。结果,我们发现断裂能由一个静态塑性弹性分量和另一个动态粘弹性分量组成,阐明了每个分量的简单物理解释,并给出了对增强工业聚合物材料实际应用有用的指导原则。此外,我们引入了一种与内聚区模型在本质上相似的断裂有限应力准则,并利用我们的数据证明该应力准则与格里菲斯能量平衡是一致的。