Suppr超能文献

义肢接受腔中传感器部署的冗余度降低:案例研究。

Redundancy Reduction for Sensor Deployment in Prosthetic Socket: A Case Study.

机构信息

School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden.

Research and Innovation, Össur, 110 Reykjavík, Iceland.

出版信息

Sensors (Basel). 2022 Apr 19;22(9):3103. doi: 10.3390/s22093103.

Abstract

The irregular pressure exerted by a prosthetic socket over the residual limb is one of the major factors that cause the discomfort of amputees using artificial limbs. By deploying the wearable sensors inside the socket, the interfacial pressure distribution can be studied to find the active regions and rectify the socket design. In this case study, a clustering-based analysis method is presented to evaluate the density and layout of these sensors, which aims to reduce the local redundancy of the sensor deployment. In particular, a Self-Organizing Map (SOM) and K-means algorithm are employed to find the clustering results of the sensor data, taking the pressure measurement of a predefined sensor placement as the input. Then, one suitable clustering result is selected to detect the layout redundancy from the input area. After that, the Pearson correlation coefficient (PCC) is used as a similarity metric to guide the removal of redundant sensors and generate a new sparser layout. The Jenson-Shannon Divergence (JSD) and the mean pressure are applied as posterior validation metrics that compare the pressure features before and after sensor removal. A case study of a clinical trial with two sensor strips is used to prove the utility of the clustering-based analysis method. The sensors on the posterior and medial regions are suggested to be reduced, and the main pressure features are kept. The proposed method can help sensor designers optimize sensor configurations for intra-socket measurements and thus assist the prosthetists in improving the socket fitting.

摘要

假肢接受腔对残肢施加的不规则压力是导致假肢使用者不适的主要因素之一。通过在接受腔内部部署可穿戴传感器,可以研究界面压力分布,以找到活动区域并纠正接受腔设计。在本案例研究中,提出了一种基于聚类的分析方法来评估这些传感器的密度和布局,旨在减少传感器部署的局部冗余。具体来说,采用自组织映射(SOM)和 K-均值算法来找到传感器数据的聚类结果,以预定传感器放置的压力测量作为输入。然后,选择一个合适的聚类结果来从输入区域检测布局冗余。之后,使用皮尔逊相关系数(PCC)作为相似性度量来指导冗余传感器的去除,并生成新的稀疏布局。使用 Jensen-Shannon 散度(JSD)和平均压力作为后验验证指标,比较传感器去除前后的压力特征。使用具有两个传感器条带的临床试验案例来证明基于聚类的分析方法的有效性。建议减少后部和内侧区域的传感器,并保留主要的压力特征。该方法可以帮助传感器设计人员优化传感器配置,以进行接受腔内测量,从而帮助假肢技师改善接受腔适配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da78/9105868/1bb25350466f/sensors-22-03103-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验