Suppr超能文献

SPCANet:拥堵人群计数的条带池化联合注意力网络。

SPCANet: congested crowd counting strip pooling combined attention network.

作者信息

Yuan Zhongyuan

机构信息

College of Information and Intelligence, Hunan Agricultural University, Changsha, Hunan Province, China.

出版信息

PeerJ Comput Sci. 2024 Sep 18;10:e2273. doi: 10.7717/peerj-cs.2273. eCollection 2024.

Abstract

Crowd counting aims to estimate the number and distribution of the population in crowded places, which is an important research direction in object counting. It is widely used in public place management, crowd behavior analysis, and other scenarios, showing its robust practicality. In recent years, crowd-counting technology has been developing rapidly. However, in highly crowded and noisy scenes, the counting effect of most models is still seriously affected by the distortion of view angle, dense occlusion, and inconsistent crowd distribution. Perspective distortion causes crowds to appear in different sizes and shapes in the image, and dense occlusion and inconsistent crowd distributions result in parts of the crowd not being captured completely. This ultimately results in the imperfect capture of spatial information in the model. To solve such problems, we propose a strip pooling combined attention (SPCANet) network model based on normed-deformable convolution (NDConv). We model long-distance dependencies more efficiently by introducing strip pooling. In contrast to traditional square kernel pooling, strip pooling uses long and narrow kernels (1×N or N×1) to deal with dense crowds, mutual occlusion, and overlap. Efficient channel attention (ECA), a mechanism for learning channel attention using a local cross-channel interaction strategy, is also introduced in SPCANet. This module generates channel attention through a fast 1D convolution to reduce model complexity while improving performance as much as possible. Four mainstream datasets, Shanghai Tech Part A, Shanghai Tech Part B, UCF-QNRF, and UCF CC 50, were utilized in extensive experiments, and mean absolute error (MAE) exceeds the baseline, which is 60.9, 7.3, 90.8, and 161.1, validating the effectiveness of SPCANet. Meanwhile, mean squared error (MSE) decreases by 5.7% on average over the four datasets, and the robustness is greatly improved.

摘要

人群计数旨在估计拥挤场所中的人口数量和分布,这是目标计数中的一个重要研究方向。它在公共场所管理、人群行为分析等场景中得到广泛应用,显示出强大的实用性。近年来,人群计数技术发展迅速。然而,在高度拥挤和嘈杂的场景中,大多数模型的计数效果仍受到视角扭曲、密集遮挡和人群分布不一致的严重影响。视角扭曲导致人群在图像中呈现出不同的大小和形状,而密集遮挡和人群分布不一致会导致部分人群未被完全捕捉。这最终导致模型对空间信息的捕捉不完美。为了解决此类问题,我们提出了一种基于归一化可变形卷积(NDConv)的带状池化联合注意力(SPCANet)网络模型。我们通过引入带状池化更有效地对长距离依赖进行建模。与传统的方形核池化不同,带状池化使用长而窄的核(1×N或N×1)来处理密集人群、相互遮挡和重叠。高效通道注意力(ECA),一种使用局部跨通道交互策略学习通道注意力的机制,也被引入到SPCANet中。该模块通过快速一维卷积生成通道注意力,以降低模型复杂度,同时尽可能提高性能。在广泛的实验中使用了四个主流数据集,即上海科技大学A部分、上海科技大学B部分、UCF-QNRF和UCF CC 50,平均绝对误差(MAE)超过基线,分别为60.9、7.3、90.8和161.1,验证了SPCANet的有效性。同时,在这四个数据集上平均均方误差(MSE)下降了5.7%,鲁棒性得到了极大提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dcc/11419659/428a6fc1fd1a/peerj-cs-10-2273-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验