Centro de Investigación, Innovación y Desarrollo Tecnológico UVM (CIIDETEC-UVM), Universidad del Valle de Mexico, Querétaro 76230, Mexico.
Sensors (Basel). 2022 Apr 30;22(9):3424. doi: 10.3390/s22093424.
Human Machine Interfaces (HMI) principles are for the development of interfaces for assistance or support systems in physiotherapy or rehabilitation processes. One of the main problems is the degree of customization when applying some rehabilitation therapy or when adapting an assistance system to the individual characteristics of the users. To solve this inconvenience, it is proposed to implement a database of surface Electromyography (sEMG) of a channel in healthy individuals for pattern recognition through Neural Networks of contraction in the muscular region of the biceps brachii. Each movement is labeled using the One-Hot Encoding technique, which activates a state machine to control the position of an anthropomorphic manipulator robot and validate the response time of the designed HMI. Preliminary results show that the learning curve decreases when customizing the interface. The developed system uses muscle contraction to direct the position of the end effector of a virtual robot. The classification of Electromyography (EMG) signals is obtained to generate trajectories in real time by designing a test platform in LabVIEW.
人机界面 (HMI) 原理用于开发物理治疗或康复过程中的辅助或支持系统的接口。其中一个主要问题是在应用某些康复治疗或使辅助系统适应用户个体特征时的定制程度。为了解决这个不便,建议实施表面肌电图 (sEMG) 数据库,以便通过收缩的神经网络对健康个体的通道进行模式识别肱二头肌的肌肉区域。使用 One-Hot 编码技术对每个运动进行标记,该技术激活状态机来控制拟人操纵器机器人的位置,并验证设计的 HMI 的响应时间。初步结果表明,当定制接口时,学习曲线会下降。所开发的系统使用肌肉收缩来直接控制虚拟机器人的末端执行器的位置。通过在 LabVIEW 中设计测试平台,可以获得肌电图 (EMG) 信号的分类,以实时生成轨迹。