Suppr超能文献

用于在伸手过程中使用表面肌电图和上下文数据进行圆柱抓握预测的多模态深度学习模型。

Multimodal Deep Learning Model for Cylindrical Grasp Prediction Using Surface Electromyography and Contextual Data During Reaching.

作者信息

Lázaro Raquel, Vergara Margarita, Morales Antonio, Mollineda Ramón A

机构信息

Department of Mechanical Engineering and Construction, Universitat Jaume I, 12071 Castelló, Spain.

Department of Computer Science and Engineering, Universitat Jaume I, 12071 Castelló, Spain.

出版信息

Biomimetics (Basel). 2025 Feb 27;10(3):145. doi: 10.3390/biomimetics10030145.

Abstract

Grasping objects, from simple tasks to complex fine motor skills, is a key component of our daily activities. Our approach to facilitate the development of advanced prosthetics, robotic hands and human-machine interaction systems consists of collecting and combining surface electromyography (EMG) signals and contextual data of individuals performing manipulation tasks. In this context, the identification of patterns and prediction of hand grasp types is crucial, with cylindrical grasp being one of the most common and functional. Traditional approaches to grasp prediction often rely on unimodal data sources, limiting their ability to capture the complexity of real-world scenarios. In this work, grasp prediction models that integrate both EMG signals and contextual (task- and product-related) information have been explored to improve the prediction of cylindrical grasps during reaching movements. Three model architectures are presented: an EMG processing model based on convolutions that analyzes forearm surface EMG data, a fully connected model for processing contextual information, and a hybrid architecture combining both inputs resulting in a multimodal model. The results show that context has great predictive power. Variables such as object size and weight (product-related) were found to have a greater impact on model performance than task height (task-related). Combining EMG and product context yielded better results than using each data mode separately, confirming the importance of product context in improving EMG-based models of grasping.

摘要

从简单任务到复杂精细运动技能,抓握物体是我们日常活动的关键组成部分。我们促进先进假肢、机器人手和人机交互系统发展的方法包括收集和组合执行操作任务的个体的表面肌电图(EMG)信号及情境数据。在此背景下,识别模式和预测手部抓握类型至关重要,圆柱状抓握是最常见且实用的抓握类型之一。传统的抓握预测方法通常依赖单峰数据源,限制了它们捕捉现实世界场景复杂性的能力。在这项工作中,探索了整合EMG信号和情境(任务及产品相关)信息的抓握预测模型,以改善伸手动作期间圆柱状抓握的预测。提出了三种模型架构:一种基于卷积的EMG处理模型,用于分析前臂表面EMG数据;一个用于处理情境信息的全连接模型;以及一种结合两种输入的混合架构,从而形成一个多模态模型。结果表明情境具有强大的预测能力。发现诸如物体尺寸和重量(产品相关)等变量对模型性能的影响比任务高度(任务相关)更大。将EMG和产品情境结合起来比单独使用每种数据模式产生了更好的结果,证实了产品情境在改进基于EMG的抓握模型中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/389b/11940000/31d7e231e06b/biomimetics-10-00145-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验