Suppr超能文献

一种基于长短期记忆的用于降雨预测的增强自适应动态元启发式优化算法。

An enhanced adaptive dynamic metaheuristic optimization algorithm for rainfall prediction depends on long short-term memory.

作者信息

Elshewey Ahmed M, Alhussan Amel Ali, Khafaga Doaa Sami, Radwan Marwa, El-Kenawy El-Sayed M, Khodadadi Nima

机构信息

Department of Computer Science, Faculty of Computers and Information, Suez University, Suez, Egypt.

Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

出版信息

PLoS One. 2025 Jun 2;20(6):e0317554. doi: 10.1371/journal.pone.0317554. eCollection 2025.

Abstract

Sorting and analyzing different types of rainfall according to their intensity, duration, distribution, and associated meteorological circumstances is the process of rainfall prediction. Understanding rainfall patterns and predictions is crucial for various applications, such as climate studies, weather forecasting, agriculture, and water resource management. Making educated decisions about things like agricultural planning, effective use of water resources, precise weather forecasting, and a greater comprehension of climate-related phenomena is made more accessible when many components of rainfall are analyzed. The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. The AD-PSO-Guided WOA overcomes limitations of conventional optimization algorithms, such as premature convergence by balancing global search (exploration) and local refinement (exploitation). This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. Next, the desired features are trained on five different models: Decision Trees (DT), Random Forest (RF), Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM), and K-Nearest Neighbor (KNN). Out of all the models, LSTM produced the best results. The AD-PSO-Guided WOA algorithm was used to adjust the hyperparameters for the LSTM model. With coefficient of determination (R2) of 0.9636, the results demonstrate the superior efficacy and performance of the suggested methodology (AD-PSO-Guided WOA-LSTM) compared to other alternative optimization techniques.

摘要

根据降雨强度、持续时间、分布及相关气象情况对不同类型降雨进行分类和分析,这一过程即为降雨预测。了解降雨模式和预测对于多种应用至关重要,比如气候研究、天气预报、农业和水资源管理等。当对降雨的多个组成部分进行分析时,就能更便于在诸如农业规划、水资源有效利用、精准天气预报以及对气候相关现象的更深入理解等方面做出明智决策。机器学习和元启发式算法在应对和克服这一难题方面具有显著优势。本研究引入了结合引导鲸鱼优化算法增强的自适应动态粒子群优化算法(AD - PSO - 引导WOA)用于降雨预测。AD - PSO - 引导WOA克服了传统优化算法的局限性,例如通过平衡全局搜索(探索)和局部细化(利用)来避免过早收敛。这有效地平衡了探索和利用,并解决了原始算法的早期收敛问题。为了选择数据集中最关键的特征,特征选择方法采用了AD - PSO - 引导WOA的二进制格式。接下来,在五个不同模型上对所需特征进行训练:决策树(DT)、随机森林(RF)、多层感知器(MLP)、长短期记忆网络(LSTM)和K近邻(KNN)。在所有模型中,LSTM产生了最佳结果。使用AD - PSO - 引导WOA算法来调整LSTM模型的超参数。结果表明,与其他替代优化技术相比,所提出的方法(AD - PSO - 引导WOA - LSTM)具有更高的功效和性能,其决定系数(R2)为0.9636。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf3a/12129181/67772528431c/pone.0317554.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验