Suppr超能文献

基于四元数的融合方法对可穿戴传感器高维原始数据进行狗的活动增强分类。

Enhanced Classification of Dog Activities with Quaternion-Based Fusion Approach on High-Dimensional Raw Data from Wearable Sensors.

机构信息

Department of Computer Engineering, Gachon University, Seongnam 13120, Republic of Korea.

出版信息

Sensors (Basel). 2022 Dec 4;22(23):9471. doi: 10.3390/s22239471.

Abstract

The employment of machine learning algorithms to the data provided by wearable movement sensors is one of the most common methods to detect pets' behaviors and monitor their well-being. However, defining features that lead to highly accurate behavior classification is quite challenging. To address this problem, in this study we aim to classify six main dog activities (standing, walking, running, sitting, lying down, and resting) using high-dimensional sensor raw data. Data were received from the accelerometer and gyroscope sensors that are designed to be attached to the dog's smart costume. Once data are received, the module computes a quaternion value for each data point that provides handful features for classification. Next, to perform the classification, we used several supervised machine learning algorithms, such as the Gaussian naïve Bayes (GNB), Decision Tree (DT), K-nearest neighbor (KNN), and support vector machine (SVM). In order to evaluate the performance, we finally compared the proposed approach's F-score accuracies with the accuracy of classic approach performance, where sensors' data are collected without computing the quaternion value and directly utilized by the model. Overall, 18 dogs equipped with harnesses participated in the experiment. The results of the experiment show a significantly enhanced classification with the proposed approach. Among all the classifiers, the GNB classification model achieved the highest accuracy for dog behavior. The behaviors are classified with F-score accuracies of 0.94, 0.86, 0.94, 0.89, 0.95, and 1, respectively. Moreover, it has been observed that the GNB classifier achieved 93% accuracy on average with the dataset consisting of quaternion values. In contrast, it was only 88% when the model used the dataset from sensors' data.

摘要

使用机器学习算法对可穿戴运动传感器提供的数据进行分析是检测宠物行为和监测其健康状况的最常用方法之一。然而,定义导致高度准确行为分类的特征是相当具有挑战性的。为了解决这个问题,在本研究中,我们旨在使用高维传感器原始数据对六只狗的主要活动(站立、行走、跑步、坐着、躺着和休息)进行分类。数据来自旨在附着在狗的智能服装上的加速度计和陀螺仪传感器。收到数据后,模块为每个数据点计算一个四元数值,为分类提供大量特征。接下来,为了执行分类,我们使用了几种监督机器学习算法,如高斯朴素贝叶斯(GNB)、决策树(DT)、K-最近邻(KNN)和支持向量机(SVM)。为了评估性能,我们最终将所提出的方法的 F 分数准确性与经典方法的性能准确性进行了比较,其中传感器数据在不计算四元数值的情况下进行收集,并直接由模型使用。总体而言,有 18 只配备了马具的狗参与了实验。实验结果表明,所提出的方法具有显著提高的分类性能。在所有分类器中,GNB 分类模型对狗的行为表现出最高的准确性。行为分类的 F 分数准确性分别为 0.94、0.86、0.94、0.89、0.95 和 1。此外,观察到 GNB 分类器使用包含四元数值的数据集平均达到 93%的准确性,而使用来自传感器数据的数据集时,其准确性仅为 88%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aba0/9739384/2e9e8ff2b5d7/sensors-22-09471-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验