Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota.
Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania.
Biophys J. 2022 Jun 21;121(12):2449-2460. doi: 10.1016/j.bpj.2022.05.013. Epub 2022 May 18.
Cardiac myosin-binding protein C (cMyBP-C) modulates cardiac contractility through putative interactions with the myosin S2 tail and/or the thin filament. The relative contribution of these binding-partner interactions to cMyBP-C modulatory function remains unclear. Hence, we developed a "nanosurfer" assay as a model system to interrogate these cMyBP-C binding-partner interactions. Synthetic thick filaments were generated using recombinant human β-cardiac myosin subfragments (HMM or S1) attached to DNA nanotubes, with 14- or 28-nm spacing, corresponding to the 14.3-nm myosin spacing in native thick filaments. The nanosurfer assay consists of DNA nanotubes added to the in vitro motility assay so that myosins on the motility surface effectively deliver thin filaments to the DNA nanotubes, enhancing thin filament gliding probability on the DNA nanotubes. Thin filament velocities on nanotubes with either 14- or 28-nm myosin spacing were no different. We then characterized the effects of cMyBP-C on thin filament motility by alternating HMM and cMyBP-C N-terminal fragments (C0-C2 or C1-C2) on nanotubes every 14 nm. Both C0-C2 and C1-C2 reduced thin filament velocity four- to sixfold relative to HMM alone. Similar inhibition occurred using the myosin S1 construct, which lacks the myosin S2 region proposed to interact with cMyBP-C, suggesting that the cMyBP-C N terminus must interact with other myosin head domains and/or actin to slow thin filament velocity. Thin filament velocity was unaffected by the C0-C1f fragment, which lacks the majority of the M-domain, supporting the importance of this domain for inhibitory interaction(s). A C0-C2 fragment with phospho-mimetic replacement in the M-domain showed markedly less inhibition of thin filament velocity compared with its phospho-null counterpart, highlighting the modulatory role of M-domain phosphorylation on cMyBP-C function. Therefore, the nanosurfer assay provides a platform to precisely manipulate spatially dependent cMyBP-C binding-partner interactions, shedding light on the molecular regulation of β-cardiac myosin contractility.
心肌肌球蛋白结合蛋白 C(cMyBP-C)通过与肌球蛋白 S2 尾部和/或细肌丝的假定相互作用来调节心肌收缩力。这些结合伴侣相互作用对 cMyBP-C 调节功能的相对贡献尚不清楚。因此,我们开发了一种“纳米冲浪者”测定法作为模型系统来研究这些 cMyBP-C 结合伴侣相互作用。使用附着在 DNA 纳米管上的重组人β-心肌肌球蛋白亚片段(HMM 或 S1)生成合成的粗肌丝,其间距为 14nm 或 28nm,分别对应于天然粗肌丝中 14.3nm 的肌球蛋白间距。纳米冲浪者测定法包括将 DNA 纳米管添加到体外运动测定法中,使得运动表面上的肌球蛋白有效地将细肌丝递送到 DNA 纳米管,从而提高 DNA 纳米管上细肌丝的滑行概率。具有 14nm 或 28nm 肌球蛋白间距的纳米管上的细肌丝速度没有差异。然后,我们通过每隔 14nm 在纳米管上交替使用 HMM 和 cMyBP-C N 端片段(C0-C2 或 C1-C2)来表征 cMyBP-C 对细肌丝运动的影响。C0-C2 和 C1-C2 相对于单独的 HMM 将细肌丝速度降低了四到六倍。使用缺少被提议与 cMyBP-C 相互作用的肌球蛋白 S2 区域的肌球蛋白 S1 构建体也发生了类似的抑制作用,这表明 cMyBP-C N 端必须与其他肌球蛋白头部结构域和/或肌动蛋白相互作用以减慢细肌丝速度。缺乏大多数 M 结构域的 C0-C1f 片段不会影响细肌丝速度,这支持了该结构域对抑制相互作用的重要性。与磷酸化缺失的对应物相比,M 结构域中具有磷酸化模拟置换的 C0-C2 片段对细肌丝速度的抑制作用明显较小,突出了 M 结构域磷酸化对 cMyBP-C 功能的调节作用。因此,纳米冲浪者测定法提供了一个平台来精确地操纵空间依赖性的 cMyBP-C 结合伴侣相互作用,为β-心肌肌球蛋白收缩力的分子调节提供了线索。