School of Biosciences, University of Kent, Canterbury CT2 7NH, United Kingdom.
Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405.
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6828-6835. doi: 10.1073/pnas.1816480116. Epub 2019 Mar 15.
Cardiac muscle contraction is triggered by calcium binding to troponin. The consequent movement of tropomyosin permits myosin binding to actin, generating force. Cardiac myosin-binding protein C (cMyBP-C) plays a modulatory role in this activation process. One potential mechanism for the N-terminal domains of cMyBP-C to achieve this is by binding directly to the actin-thin filament at low calcium levels to enhance the movement of tropomyosin. To determine the molecular mechanisms by which cMyBP-C enhances myosin recruitment to the actin-thin filament, we directly visualized fluorescently labeled cMyBP-C N-terminal fragments and GFP-labeled myosin molecules binding to suspended actin-thin filaments in a fluorescence-based single-molecule microscopy assay. Binding of the C0C3 N-terminal cMyBP-C fragment to the thin filament enhanced myosin association at low calcium levels. However, at high calcium levels, C0C3 bound in clusters, blocking myosin binding. Dynamic imaging of thin filament-bound Cy3-C0C3 molecules demonstrated that these fragments diffuse along the thin filament before statically binding, suggesting a mechanism that involves a weak-binding mode to search for access to the thin filament and a tight-binding mode to sensitize the thin filament to calcium, thus enhancing myosin binding. Although shorter N-terminal fragments (Cy3-C0C1 and Cy3-C0C1f) bound to the thin filaments and displayed modes of motion on the thin filament similar to that of the Cy3-C0C3 fragment, the shorter fragments were unable to sensitize the thin filament. Therefore, the longer N-terminal fragment (C0C3) must possess the requisite domains needed to bind specifically to the thin filament in order for the cMyBP-C N terminus to modulate cardiac contractility.
心肌收缩是由钙与肌钙蛋白结合触发的。随之而来的肌球蛋白轻链移动允许肌球蛋白与肌动蛋白结合,产生力。心肌肌球蛋白结合蛋白 C(cMyBP-C)在这个激活过程中起着调节作用。cMyBP-C 的 N 端结构域实现这一点的一个潜在机制是在低钙水平下直接与肌动蛋白-细丝结合,以增强肌球蛋白轻链的移动。为了确定 cMyBP-C 增强肌球蛋白与肌动蛋白-细丝结合的分子机制,我们直接可视化了荧光标记的 cMyBP-C N 端片段和 GFP 标记的肌球蛋白分子在荧光基于单分子显微镜测定法中结合悬浮的肌动蛋白-细丝。C0C3 N 端 cMyBP-C 片段与细丝的结合增强了肌球蛋白在低钙水平下的结合。然而,在高钙水平下,C0C3 以簇的形式结合,阻止了肌球蛋白的结合。荧光标记的 Cy3-C0C3 分子在薄丝上的动态成像表明这些片段在静态结合之前沿薄丝扩散,表明涉及弱结合模式以寻找进入细丝的途径和紧密结合模式使细丝对钙敏感,从而增强肌球蛋白结合。尽管较短的 N 端片段(Cy3-C0C1 和 Cy3-C0C1f)与细丝结合,并且在细丝上的运动模式与 Cy3-C0C3 片段相似,但较短的片段无法使细丝敏感。因此,较长的 N 端片段(C0C3)必须具有与细丝特异性结合的必需结构域,以便 cMyBP-C N 端调节心脏收缩性。