Suppr超能文献

设计含本地解磷细菌的协同生物刺激剂配方以实现小麦可持续生产

Designing Synergistic Biostimulants Formulation Containing Autochthonous Phosphate-Solubilizing Bacteria for Sustainable Wheat Production.

作者信息

Yahya Mahreen, Rasul Maria, Sarwar Yasra, Suleman Muhammad, Tariq Mohsin, Hussain Syed Zajif, Sajid Zahid Iqbal, Imran Asma, Amin Imran, Reitz Thomas, Tarkka Mika Tapio, Yasmin Sumera

机构信息

Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan.

Department of Environment and Energy, Sejong University, Seoul, South Korea.

出版信息

Front Microbiol. 2022 May 3;13:889073. doi: 10.3389/fmicb.2022.889073. eCollection 2022.

Abstract

Applying phosphate-solubilizing bacteria (PSB) as biofertilizers has enormous potential for sustainable agriculture. Despite this, there is still a lack of information regarding the expression of key genes related to phosphate-solubilization (PS) and efficient formulation strategies. In this study, we investigated rock PS by sp. SSR (DSM 109610) by relating it to bacterial gene expression and searching for an efficient formulation. The quantitative PCR (qPCR) primers were designed for PS marker genes glucose dehydrogenase (), pyrroloquinoline quinone biosynthesis protein C (), and phosphatase (). The SSR-inoculated soil supplemented with rock phosphate (RP) showed a 6-fold higher expression of and compared to inoculated soil without RP. Additionally, an increase in plant phosphorous (P) (2%), available soil P (4.7%), and alkaline phosphatase (6%) activity was observed in PSB-inoculated plants supplemented with RP. The root architecture improved by SSR, with higher root length, diameter, and volume. sp. SSR was further used to design bioformulations with two well-characterized PS, spp. DSM 109592 and DSM 109593, using the four organic amendments, biochar, compost, filter mud (FM), and humic acid. All four carrier materials maintained adequate survival and inoculum shelf life of the bacterium, as indicated by the field emission scanning electron microscopy analysis. The FM-based bioformulation was most efficacious and enhanced not only wheat grain yield (4-9%) but also seed P (9%). Moreover, FM-based bioformulation enhanced soil available P (8.5-11%) and phosphatase activity (4-5%). Positive correlations were observed between the PSB solubilization in the presence of different insoluble P sources, and soil available P, soil phosphatase activity, seed P content, and grain yield of the field grown inoculated wheat variety Faisalabad-2008, when di-ammonium phosphate fertilizer application was reduced by 20%. This study reports for the first time the marker gene expression of an inoculated PSB strain and provides a valuable groundwork to design field scale formulations that can maintain inoculum dynamics and increase its shelf life. This may constitute a step-change in the sustainable cultivation of wheat under the P-deficient soil conditions.

摘要

将解磷细菌(PSB)用作生物肥料在可持续农业方面具有巨大潜力。尽管如此,关于解磷(PS)相关关键基因的表达以及高效配方策略的信息仍然匮乏。在本研究中,我们通过将sp. SSR(DSM 109610)与细菌基因表达相关联并寻找高效配方,来研究其对磷矿石的解磷作用。针对PS标记基因葡萄糖脱氢酶()、吡咯喹啉醌生物合成蛋白C()和磷酸酶()设计了定量PCR(qPCR)引物。添加了磷矿石(RP)的接种SSR的土壤与未添加RP的接种土壤相比,和的表达高6倍。此外,在添加了RP的接种PSB的植物中,观察到植物磷(P)含量增加了2%,土壤有效磷增加了4.7%,碱性磷酸酶活性增加了6%。SSR改善了根系结构,根的长度、直径和体积更大。sp. SSR进一步与两种特性明确的PS,即spp. DSM 109592和DSM 109593一起,用于利用生物炭、堆肥、滤泥(FM)和腐殖酸这四种有机改良剂设计生物制剂。场发射扫描电子显微镜分析表明,所有四种载体材料都能使细菌保持足够的存活率和接种物保质期。基于FM的生物制剂效果最佳,不仅提高了小麦籽粒产量(4 - 9%),还提高了种子磷含量(9%)。此外,基于FM的生物制剂提高了土壤有效磷(8.5 - 11%)和磷酸酶活性(4 - 5%)。当磷酸二铵肥料施用量减少20%时,在不同难溶性磷源存在下PSB的解磷作用与土壤有效磷、土壤磷酸酶活性、种子磷含量以及田间种植的接种小麦品种费萨拉巴德 - 2008的籽粒产量之间存在正相关。本研究首次报道了接种PSB菌株的标记基因表达,并为设计能够维持接种物动态并延长其保质期的田间规模制剂提供了有价值的基础。这可能是在缺磷土壤条件下小麦可持续种植方面的一个重大转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c416/9111743/0553a2606dc5/fmicb-13-889073-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验