Suppr超能文献

胚胎中通过光激活标记和追踪线粒体

Labeling and Tracking Mitochondria with Photoactivation in Embryos.

作者信息

Chowdhary Sayali, Rikhy Richa

机构信息

Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune, India.

出版信息

Bio Protoc. 2022 Mar 5;12(5):e4347. doi: 10.21769/BioProtoc.4347.

Abstract

Mitochondria are relatively small, fragmented, and abundant in the large embryos of and zebrafish. It is essential to study their distribution and dynamics in these embryos to understand the mechanistic role of mitochondrial function in early morphogenesis events. Photoactivation of mitochondrially tagged GFP (mito-PA-GFP) is an attractive method to highlight a specific population of mitochondria in living embryos and track their distribution during development. embryos contain large numbers of maternally inherited mitochondria, which distribute differently at specific stages of early embryogenesis. They are enriched basally in the syncytial division cycles and move apically during cellularization. Here, we outline a method for highlighting a population of mitochondria in discrete locations using mito-PA-GFP in the blastoderm embryo, to follow their distribution across syncytial division cycles and cellularization. Photoactivation uses fluorophores, such as PA-GFP, that can change their fluorescence state upon exposure to ultraviolet light. This enables marking a precise population of fluorescently tagged molecules of organelles at selected regions, to visualize and systematically follow their dynamics and movements. Photoactivation followed by live imaging provides an effective way to pulse label a population of mitochondria and follow them through the dynamic morphogenetic events during embryogenesis.

摘要

线粒体相对较小、呈碎片化,且在果蝇和斑马鱼的大型胚胎中数量丰富。研究它们在这些胚胎中的分布和动态对于理解线粒体功能在早期形态发生事件中的机制作用至关重要。线粒体标记的绿色荧光蛋白(mito-PA-GFP)的光激活是一种在活胚胎中突出特定线粒体群体并追踪其在发育过程中分布的有吸引力的方法。果蝇胚胎含有大量母系遗传的线粒体,它们在早期胚胎发生的特定阶段分布不同。在合胞体分裂周期中,它们在基部富集,在细胞化过程中向顶端移动。在这里,我们概述了一种在果蝇囊胚胚胎中使用mito-PA-GFP突出离散位置线粒体群体的方法,以追踪它们在合胞体分裂周期和细胞化过程中的分布。光激活使用诸如PA-GFP之类的荧光团,它们在暴露于紫外光时会改变其荧光状态。这使得能够在选定区域标记细胞器的精确荧光标记分子群体,以可视化并系统地追踪它们的动态和运动。光激活后进行实时成像提供了一种有效方法,可对线粒体群体进行脉冲标记,并在果蝇胚胎发生过程中通过动态形态发生事件追踪它们。

相似文献

1
Labeling and Tracking Mitochondria with Photoactivation in Embryos.
Bio Protoc. 2022 Mar 5;12(5):e4347. doi: 10.21769/BioProtoc.4347.
2
Analysis of mitochondrial organization and function in the Drosophila blastoderm embryo.
Sci Rep. 2017 Jul 14;7(1):5502. doi: 10.1038/s41598-017-05679-1.
3
Mitochondrial morphology and activity regulate furrow ingression and contractile ring dynamics in cellularization.
Mol Biol Cell. 2020 Oct 1;31(21):2331-2347. doi: 10.1091/mbc.E20-03-0177. Epub 2020 Aug 5.
4
5
Quantification reveals early dynamics in Drosophila maternal gradients.
PLoS One. 2021 Aug 19;16(8):e0244701. doi: 10.1371/journal.pone.0244701. eCollection 2021.
6
Fluorescence imaging techniques for studying Drosophila embryo development.
Curr Protoc Cell Biol. 2008 Jun;Chapter 4:Unit 4.18. doi: 10.1002/0471143030.cb0418s39.
8
Coordination of Embryogenesis by the Centrosome in Drosophila melanogaster.
Results Probl Cell Differ. 2019;67:277-321. doi: 10.1007/978-3-030-23173-6_12.
9
An essential role for zygotic expression in the pre-cellular Drosophila embryo.
PLoS Genet. 2013 Apr;9(4):e1003428. doi: 10.1371/journal.pgen.1003428. Epub 2013 Apr 4.

引用本文的文献

1
From powerhouse to modulator: regulating immune system responses through intracellular mitochondrial transfer.
Cell Commun Signal. 2025 May 20;23(1):232. doi: 10.1186/s12964-025-02237-5.
3
Bendless is essential for PINK1-Park mediated Mitofusin degradation under mitochondrial stress caused by loss of LRPPRC.
PLoS Genet. 2023 Apr 25;19(4):e1010493. doi: 10.1371/journal.pgen.1010493. eCollection 2023 Apr.

本文引用的文献

1
FlyBase: updates to the Drosophila melanogaster knowledge base.
Nucleic Acids Res. 2021 Jan 8;49(D1):D899-D907. doi: 10.1093/nar/gkaa1026.
2
Mitochondrial morphology and activity regulate furrow ingression and contractile ring dynamics in cellularization.
Mol Biol Cell. 2020 Oct 1;31(21):2331-2347. doi: 10.1091/mbc.E20-03-0177. Epub 2020 Aug 5.
3
Mitochondrial Involvement in Migration, Invasion and Metastasis.
Front Cell Dev Biol. 2019 Dec 20;7:355. doi: 10.3389/fcell.2019.00355. eCollection 2019.
4
Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline.
Nature. 2019 Jun;570(7761):380-384. doi: 10.1038/s41586-019-1213-4. Epub 2019 May 15.
5
ImageJ2: ImageJ for the next generation of scientific image data.
BMC Bioinformatics. 2017 Nov 29;18(1):529. doi: 10.1186/s12859-017-1934-z.
6
Analysis of mitochondrial organization and function in the Drosophila blastoderm embryo.
Sci Rep. 2017 Jul 14;7(1):5502. doi: 10.1038/s41598-017-05679-1.
7
Fiji: an open-source platform for biological-image analysis.
Nat Methods. 2012 Jun 28;9(7):676-82. doi: 10.1038/nmeth.2019.
8
Highlights of the optical highlighter fluorescent proteins.
J Microsc. 2011 Jul;243(1):1-7. doi: 10.1111/j.1365-2818.2011.03505.x. Epub 2011 May 30.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验