Research Unit Analytical Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany.
Institute of Pathology, University of Bern, Bern, 3008, Switzerland.
Cancer Commun (Lond). 2022 Jun;42(6):517-535. doi: 10.1002/cac2.12310. Epub 2022 May 20.
The response to neoadjuvant chemotherapy (NAC) differs substantially among individual patients with non-small cell lung cancer (NSCLC). Major pathological response (MPR) is a histomorphological read-out used to assess treatment response and prognosis in patients NSCLC after NAC. Although spatial metabolomics is a promising tool for evaluating metabolic phenotypes, it has not yet been utilized to assess therapy responses in patients with NSCLC. We evaluated the potential application of spatial metabolomics in cancer tissues to assess the response to NAC, using a metabolic classifier that utilizes mass spectrometry imaging combined with machine learning.
Resected NSCLC tissue specimens obtained after NAC (n = 88) were subjected to high-resolution mass spectrometry, and these data were used to develop an approach for assessing the response to NAC in patients with NSCLC. The specificities of the generated tumor cell and stroma classifiers were validated by applying this approach to a cohort of biologically matched chemotherapy-naïve patients with NSCLC (n = 85).
The developed tumor cell metabolic classifier stratified patients into different prognostic groups with 81.6% accuracy, whereas the stroma metabolic classifier displayed 78.4% accuracy. By contrast, the accuracies of MPR and TNM staging for stratification were 62.5% and 54.1%, respectively. The combination of metabolic and MPR classifiers showed slightly lower accuracy than either individual metabolic classifier. In multivariate analysis, metabolic classifiers were the only independent prognostic factors identified (tumor: P = 0.001, hazards ratio [HR] = 3.823, 95% confidence interval [CI] = 1.716-8.514; stroma: P = 0.049, HR = 2.180, 95% CI = 1.004-4.737), whereas MPR (P = 0.804; HR = 0.913; 95% CI = 0.445-1.874) and TNM staging (P = 0.078; HR = 1.223; 95% CI = 0.977-1.550) were not independent prognostic factors. Using Kaplan-Meier survival analyses, both tumor and stroma metabolic classifiers were able to further stratify patients as NAC responders (P < 0.001) and non-responders (P < 0.001).
Our findings indicate that the metabolic constitutions of both tumor cells and the stroma are valuable additions to the classical histomorphology-based assessment of tumor response.
非小细胞肺癌(NSCLC)患者对新辅助化疗(NAC)的反应存在显著差异。主要病理反应(MPR)是一种组织形态学读出,用于评估 NSCLC 患者 NAC 后的治疗反应和预后。尽管空间代谢组学是评估代谢表型的有前途的工具,但尚未将其用于评估 NSCLC 患者的治疗反应。我们评估了利用基于质谱成像和机器学习的代谢分类器,在癌症组织中进行空间代谢组学评估对 NAC 反应的潜在应用。
对 NAC 后(n=88)获得的 NSCLC 组织标本进行高分辨率质谱分析,并利用这些数据开发一种用于评估 NSCLC 患者对 NAC 反应的方法。通过将该方法应用于一组具有生物学匹配的化疗初治 NSCLC 患者(n=85),验证了生成的肿瘤细胞和基质分类器的特异性。
所开发的肿瘤细胞代谢分类器以 81.6%的准确率将患者分为不同的预后组,而基质代谢分类器的准确率为 78.4%。相比之下,MPR 和 TNM 分期的分层准确率分别为 62.5%和 54.1%。代谢和 MPR 分类器的组合显示出略低于单个代谢分类器的准确性。在多变量分析中,代谢分类器是唯一确定的独立预后因素(肿瘤:P=0.001,风险比[HR]=3.823,95%置信区间[CI] = 1.716-8.514;基质:P=0.049,HR=2.180,95%CI=1.004-4.737),而 MPR(P=0.804;HR=0.913;95%CI=0.445-1.874)和 TNM 分期(P=0.078;HR=1.223;95%CI=0.977-1.550)不是独立的预后因素。使用 Kaplan-Meier 生存分析,肿瘤和基质代谢分类器都能够进一步将患者分为 NAC 应答者(P<0.001)和非应答者(P<0.001)。
我们的研究结果表明,肿瘤细胞和基质的代谢组成是基于经典组织形态学评估肿瘤反应的有价值的补充。