Suppr超能文献

训练预测模型以评估结直肠癌手术后患者术后并发症的个体风险。

Training prediction models for individual risk assessment of postoperative complications after surgery for colorectal cancer.

机构信息

Center for Surgical Science, Department of Surgery, Zealand University Hospital Køge, Lykkebækvej 1, 4600, Køge, Denmark.

Department of Medical Informatics, Erasmus University Medical Centre, Rotterdam, The Netherlands.

出版信息

Tech Coloproctol. 2022 Aug;26(8):665-675. doi: 10.1007/s10151-022-02624-x. Epub 2022 May 20.

Abstract

BACKGROUND

The occurrence of postoperative complications and anastomotic leakage are major drivers of mortality in the immediate phase after colorectal cancer surgery. We trained prediction models for calculating patients' individual risk of complications based only on preoperatively available data in a multidisciplinary team setting. Knowing prior to surgery the probability of developing a complication could aid in improving informed decision-making by surgeon and patient and individualize surgical treatment trajectories.

METHODS

All patients over 18 years of age undergoing any resection for colorectal cancer between January 1, 2014 and December 31, 2019 from the nationwide Danish Colorectal Cancer Group database were included. Data from the database were converted into Observational Medical Outcomes Partnership Common Data Model maintained by the Observation Health Data Science and Informatics initiative. Multiple machine learning models were trained to predict postoperative complications of Clavien-Dindo grade ≥ 3B and anastomotic leakage within 30 days after surgery.

RESULTS

Between 2014 and 2019, 23,907 patients underwent resection for colorectal cancer in Denmark. A Clavien-Dindo complication grade ≥ 3B occurred in 2,958 patients (12.4%). Of 17,190 patients that received an anastomosis, 929 experienced anastomotic leakage (5.4%). Among the compared machine learning models, Lasso Logistic Regression performed best. The predictive model for complications had an area under the receiver operating characteristic curve (AUROC) of 0.704 (95%CI 0.683-0.724) and an AUROC of 0.690 (95%CI 0.655-0.724) for anastomotic leakage.

CONCLUSIONS

The prediction of postoperative complications based only on preoperative variables using a national quality assurance colorectal cancer database shows promise for calculating patient's individual risk. Future work will focus on assessing the value of adding laboratory parameters and drug exposure as candidate predictors. Furthermore, we plan to assess the external validity of our proposed model.

摘要

背景

结直肠癌手术后的近期阶段,术后并发症和吻合口漏的发生是导致死亡率的主要因素。我们在多学科团队环境中,仅基于术前可用数据训练预测模型,以计算患者发生并发症的个体风险。在手术前了解发生并发症的概率,有助于通过外科医生和患者知情决策,并使手术治疗个体化。

方法

纳入了 2014 年 1 月 1 日至 2019 年 12 月 31 日期间,来自全国丹麦结直肠癌组数据库中所有接受任何结直肠癌切除术的年龄大于 18 岁的患者。数据库中的数据转换为由观察健康数据科学和信息学倡议维护的观察医疗结果伙伴关系通用数据模型。训练了多个机器学习模型来预测术后 30 天内 Clavien-Dindo 分级≥3B 和吻合口漏的并发症。

结果

2014 年至 2019 年间,丹麦有 23907 名患者接受了结直肠癌切除术。2958 名患者(12.4%)发生 Clavien-Dindo 并发症分级≥3B。在 17190 名接受吻合术的患者中,有 929 名发生吻合口漏(5.4%)。在比较的机器学习模型中,Lasso 逻辑回归表现最佳。并发症预测模型的受试者工作特征曲线下面积(AUROC)为 0.704(95%CI 0.683-0.724),吻合口漏的 AUROC 为 0.690(95%CI 0.655-0.724)。

结论

仅使用国家质量保证结直肠癌数据库中的术前变量预测术后并发症显示出计算患者个体风险的潜力。未来的工作将集中评估添加实验室参数和药物暴露作为候选预测因子的价值。此外,我们计划评估所提出模型的外部有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验