Suppr超能文献

机器学习在预测肝、胰、结直肠手术后患者术后并发症风险中的应用。

Use of Machine Learning for Prediction of Patient Risk of Postoperative Complications After Liver, Pancreatic, and Colorectal Surgery.

机构信息

Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, 395 W. 12th Ave., Suite 670, Columbus, OH, USA.

出版信息

J Gastrointest Surg. 2020 Aug;24(8):1843-1851. doi: 10.1007/s11605-019-04338-2. Epub 2019 Aug 5.

Abstract

BACKGROUND

Surgical resection is the only potentially curative treatment for patients with colorectal, liver, and pancreatic cancers. Although these procedures are performed with low mortality, rates of complications remain relatively high following hepatopancreatic and colorectal surgery.

METHODS

The American College of Surgeons (ACS) National Surgical Quality Improvement Program was utilized to identify patients undergoing liver, pancreatic and colorectal surgery from 2014 to 2016. Decision tree models were utilized to predict the occurrence of any complication, as well as specific complications. To assess the variability of the performance of the classification trees, bootstrapping was performed on 50% of the sample.

RESULTS

Algorithms were derived from a total of 15,657 patients who met inclusion criteria. The algorithm had a good predictive ability for the occurrence of any complication, with a C-statistic of 0.74, outperforming the ASA (C-statistic 0.58) and ACS-Surgical Risk Calculator (C-statistic 0.71). The algorithm was able to predict with high accuracy thirteen out of the seventeen complications analyzed. The best performance was in the prediction of stroke (C-statistic 0.98), followed by wound dehiscence, cardiac arrest, and progressive renal failure (all C-statistic 0.96). The algorithm had a good predictive ability for superficial SSI (C-statistic 0.76), organ space SSI (C-statistic 0.76), sepsis (C-statistic 0.79), and bleeding requiring transfusion (C-statistic 0.79).

CONCLUSION

Machine learning was used to develop an algorithm that accurately predicted patient risk of developing complications following liver, pancreatic, or colorectal surgery. The algorithm had very good predictive ability to predict specific complications and demonstrated superiority over other established methods.

摘要

背景

手术切除是治疗结直肠、肝和胰腺癌患者的唯一潜在治愈方法。尽管这些手术的死亡率较低,但肝胰和结直肠手术后的并发症发生率仍然相对较高。

方法

利用美国外科医师学院(ACS)国家手术质量改进计划,从 2014 年至 2016 年,确定接受肝、胰腺和结直肠手术的患者。利用决策树模型预测任何并发症以及特定并发症的发生。为了评估分类树性能的可变性,对 50%的样本进行了引导抽样。

结果

从符合纳入标准的 15657 名患者中得出了算法。该算法对任何并发症的发生具有良好的预测能力,C 统计量为 0.74,优于美国麻醉医师协会(C 统计量 0.58)和 ACS 手术风险计算器(C 统计量 0.71)。该算法能够以高精度预测分析的 17 种并发症中的 13 种。预测效果最好的是中风(C 统计量 0.98),其次是伤口裂开、心脏骤停和进行性肾功能衰竭(均为 C 统计量 0.96)。该算法对浅表手术部位感染(C 统计量 0.76)、器官间隙感染(C 统计量 0.76)、脓毒症(C 统计量 0.79)和需要输血的出血(C 统计量 0.79)具有良好的预测能力。

结论

机器学习被用于开发一种算法,该算法可准确预测肝、胰腺或结直肠手术后患者发生并发症的风险。该算法对预测特定并发症具有很好的预测能力,并优于其他既定方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验