Suppr超能文献

改进对大规模交联数据中蛋白质构象差异和配体占据的解释。

Improved Interpretation of Protein Conformational Differences and Ligand Occupancy in Large-Scale Cross-Link Data.

机构信息

Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States.

出版信息

J Proteome Res. 2022 Jun 3;21(6):1475-1484. doi: 10.1021/acs.jproteome.2c00109. Epub 2022 May 20.

Abstract

Chemical cross-linking of proteins in complex samples, cells, or even tissues is emerging to provide unique structural information on proteins and complexes that exist within native or nativelike environments. The public database XLinkDB automatically maps cross-links to available structures based on sequence homology. Structures most likely to reflect protein conformations in the cross-linked sample are routinely identified by having cross-linked residues separated by Euclidean distances within the maximum span of the applied cross-linker. Solvent accessible surface distance (SASD), which considers the accessibility of the cross-linked residues and the path connecting them, is a better predictor of consistency than the Euclidean distance. However, SASDs of structures are not publicly available, and their calculation is computationally intensive. Here, we describe in XLinkDB version 4.0 the automatic calculation of SASDs using Jwalk for all cross-links mapped to structures, both with and without regard to ligands, and derive empirical maximum SASD spans for BDP-NHP and DSSO cross-linkers of 51 and 43 Å, respectively. We document ligands proximal to cross-links in structures and demonstrate how SASDs can be used to help infer sample protein conformations and ligand occupancy, highlighting cross-links sensitive to ADP binding in mitochondria isolated from HEK293 cells.

摘要

在复杂样本、细胞甚至组织中对蛋白质进行化学交联,为存在于天然或类似天然环境中的蛋白质和复合物提供独特的结构信息。公共数据库 XLinkDB 可根据序列同源性自动将交联映射到可用结构。通过将交联残基之间的欧式距离(Euclidean distances)分离到应用交联剂的最大跨度内,通常可以识别最有可能反映交联样品中蛋白质构象的结构。溶剂可及表面距离(Solvent accessible surface distance,SASD)考虑了交联残基的可及性及其连接路径,是比欧式距离更好的一致性预测指标。然而,结构的 SASD 并不公开,并且它们的计算计算量很大。在这里,我们在 XLinkDB 版本 4.0 中描述了使用 Jwalk 为所有映射到结构的交联自动计算 SASD 的方法,同时考虑了配体和不考虑配体的情况,并得出了 BDP-NHP 和 DSSO 交联剂的经验最大 SASD 跨度分别为 51 和 43 Å。我们记录了结构中交联附近的配体,并演示了如何使用 SASD 帮助推断样品蛋白质构象和配体占有率,突出了对 HEK293 细胞分离的线粒体中 ADP 结合敏感的交联。

相似文献

引用本文的文献

本文引用的文献

2
Highly accurate protein structure prediction with AlphaFold.利用 AlphaFold 进行高精度蛋白质结构预测。
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
8
The Molecular Mechanism of Transport by the Mitochondrial ADP/ATP Carrier.线粒体 ADP/ATP 载体的运输分子机制。
Cell. 2019 Jan 24;176(3):435-447.e15. doi: 10.1016/j.cell.2018.11.025. Epub 2019 Jan 2.
9
Tools for 3D Interactome Visualization.三维交互作用组可视化工具。
J Proteome Res. 2019 Feb 1;18(2):753-758. doi: 10.1021/acs.jproteome.8b00703. Epub 2018 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验