Suppr超能文献

预测大规模体内交联研究中蛋白质间交联部分的上限。

Prediction of an Upper Limit for the Fraction of Interprotein Cross-Links in Large-Scale In Vivo Cross-Linking Studies.

机构信息

Department of Genome Sciences , University of Washington , Seattle , Washington 98195 United States.

出版信息

J Proteome Res. 2019 Aug 2;18(8):3077-3085. doi: 10.1021/acs.jproteome.9b00189. Epub 2019 Jul 17.

Abstract

Chemical cross-linking and mass spectrometry is of growing use for establishment of distance constraints on protein conformations and interactions. Whereas intraprotein cross-links can arise from proteins in isolation, interprotein cross-links reflect proximity of two interacting proteins in the sample. Prediction of expected ratios of the number of interprotein to intraprotein cross-links is hindered by lacking comprehensive knowledge on the interactome network and global occupancy levels for all interacting complex subunits. Here we determine the theoretical number of possible inter- and intraprotein cross-links in available PDB structures of proteins bound in complexes to predict a maximum expected fraction of interprotein cross-links in large scale in vivo cross-linking studies. We show how the maximum fraction can guide interpretation of reported interprotein fractions with respect to the extent of sample protein binding, comparing whole cell and lysate cross-linked samples as an example. We also demonstrate how an observation of interprotein cross-link fractions greater than the maximum value can result from the presence of false positive cross-links which are predominantly interprotein, their number estimable from the observed surplus fraction of interprotein cross-links.

摘要

化学交联和质谱分析在建立蛋白质构象和相互作用的距离约束方面的应用越来越多。虽然蛋白质内交联可以来自于分离的蛋白质,但蛋白质间交联反映了样品中两个相互作用的蛋白质的接近程度。由于缺乏对互作组网络和所有相互作用的复合物亚基的全局占有率的全面了解,预测预期的蛋白质间交联与蛋白质内交联数量比受到阻碍。在这里,我们确定了在复合物中结合的蛋白质的可用 PDB 结构中可能存在的蛋白质间和蛋白质内交联的理论数量,以预测在大规模体内交联研究中蛋白质间交联的最大预期分数。我们展示了如何通过比较整个细胞和裂解物交联样品作为一个例子,最大分数可以指导报告的蛋白质间分数的解释,以样本中蛋白质结合的程度为参照。我们还展示了观察到的蛋白质间交联分数大于最大值如何可能是由于存在假阳性交联,它们主要是蛋白质间交联,其数量可以从观察到的蛋白质间交联的多余分数估计。

相似文献

1
Prediction of an Upper Limit for the Fraction of Interprotein Cross-Links in Large-Scale In Vivo Cross-Linking Studies.
J Proteome Res. 2019 Aug 2;18(8):3077-3085. doi: 10.1021/acs.jproteome.9b00189. Epub 2019 Jul 17.
3
Leveraging the Entirety of the Protein Data Bank to Enable Improved Structure Prediction Based on Cross-Link Data.
J Proteome Res. 2021 Jan 1;20(1):1087-1095. doi: 10.1021/acs.jproteome.0c00495. Epub 2020 Dec 2.
4
Matching cross-linked peptide spectra: only as good as the worse identification.
Mol Cell Proteomics. 2014 Feb;13(2):420-34. doi: 10.1074/mcp.M113.034009. Epub 2013 Dec 12.
5
Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry.
Science. 2012 Sep 14;337(6100):1348-52. doi: 10.1126/science.1221483.
6
Improved Interpretation of Protein Conformational Differences and Ligand Occupancy in Large-Scale Cross-Link Data.
J Proteome Res. 2022 Jun 3;21(6):1475-1484. doi: 10.1021/acs.jproteome.2c00109. Epub 2022 May 20.
7
MaXLinker: Proteome-wide Cross-link Identifications with High Specificity and Sensitivity.
Mol Cell Proteomics. 2020 Mar;19(3):554-568. doi: 10.1074/mcp.TIR119.001847. Epub 2019 Dec 15.
8
Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry.
Nat Methods. 2015 Dec;12(12):1179-84. doi: 10.1038/nmeth.3603. Epub 2015 Sep 28.
9
Molecular Details Underlying Dynamic Structures and Regulation of the Human 26S Proteasome.
Mol Cell Proteomics. 2017 May;16(5):840-854. doi: 10.1074/mcp.M116.065326. Epub 2017 Mar 14.
10
In-Culture Cross-Linking of Bacterial Cells Reveals Large-Scale Dynamic Protein-Protein Interactions at the Peptide Level.
J Proteome Res. 2017 Jul 7;16(7):2457-2471. doi: 10.1021/acs.jproteome.7b00068. Epub 2017 May 26.

引用本文的文献

1
Proteome-scale recombinant standards and a robust high-speed search engine to advance cross-linking MS-based interactomics.
Nat Methods. 2024 Dec;21(12):2327-2335. doi: 10.1038/s41592-024-02478-1. Epub 2024 Oct 31.
2
Multidimensional Cross-Linking and Real-Time Informatics for Multiprotein Interaction Studies.
J Proteome Res. 2024 Jan 5;23(1):107-116. doi: 10.1021/acs.jproteome.3c00455. Epub 2023 Dec 26.
3
The PfRCR complex bridges malaria parasite and erythrocyte during invasion.
Nature. 2024 Jan;625(7995):578-584. doi: 10.1038/s41586-023-06856-1. Epub 2023 Dec 20.
4
Cross-linking mass spectrometry discovers, evaluates, and corroborates structures and protein-protein interactions in the human cell.
Proc Natl Acad Sci U S A. 2023 Apr 25;120(17):e2219418120. doi: 10.1073/pnas.2219418120. Epub 2023 Apr 18.
5
Selenoprotein S Interacts with the Replication and Transcription Complex of SARS-CoV-2 by Binding nsp7.
J Mol Biol. 2023 Apr 15;435(8):168008. doi: 10.1016/j.jmb.2023.168008. Epub 2023 Feb 10.
7
Improved Interpretation of Protein Conformational Differences and Ligand Occupancy in Large-Scale Cross-Link Data.
J Proteome Res. 2022 Jun 3;21(6):1475-1484. doi: 10.1021/acs.jproteome.2c00109. Epub 2022 May 20.
8
In-Cell Labeling and Mass Spectrometry for Systems-Level Structural Biology.
Chem Rev. 2022 Apr 27;122(8):7647-7689. doi: 10.1021/acs.chemrev.1c00223. Epub 2021 Jul 7.
9
Reliable identification of protein-protein interactions by crosslinking mass spectrometry.
Nat Commun. 2021 Jun 11;12(1):3564. doi: 10.1038/s41467-021-23666-z.

本文引用的文献

1
The PRIDE database and related tools and resources in 2019: improving support for quantification data.
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450. doi: 10.1093/nar/gky1106.
3
Increased sensitivity with automated validation of XL-MS cleavable peptide crosslinks.
Bioinformatics. 2019 Mar 1;35(5):895-897. doi: 10.1093/bioinformatics/bty720.
4
Histone Interaction Landscapes Visualized by Crosslinking Mass Spectrometry in Intact Cell Nuclei.
Mol Cell Proteomics. 2018 Oct;17(10):2018-2033. doi: 10.1074/mcp.RA118.000924. Epub 2018 Jul 18.
5
Mango: A General Tool for Collision Induced Dissociation-Cleavable Cross-Linked Peptide Identification.
Anal Chem. 2018 May 15;90(10):6028-6034. doi: 10.1021/acs.analchem.7b04991. Epub 2018 Apr 27.
6
Protein Tertiary Structure by Crosslinking/Mass Spectrometry.
Trends Biochem Sci. 2018 Mar;43(3):157-169. doi: 10.1016/j.tibs.2017.12.006. Epub 2018 Jan 31.
7
The interactome of intact mitochondria by cross-linking mass spectrometry provides evidence for coexisting respiratory supercomplexes.
Mol Cell Proteomics. 2018 Feb;17(2):216-232. doi: 10.1074/mcp.RA117.000470. Epub 2017 Dec 8.
8
Chemical Crosslinking Mass Spectrometry Analysis of Protein Conformations and Supercomplexes in Heart Tissue.
Cell Syst. 2018 Jan 24;6(1):136-141.e5. doi: 10.1016/j.cels.2017.10.017. Epub 2017 Nov 29.
9
Structure of phycobilisome from the red alga Griffithsia pacifica.
Nature. 2017 Nov 2;551(7678):57-63. doi: 10.1038/nature24278. Epub 2017 Oct 18.
10
Architecture of the human interactome defines protein communities and disease networks.
Nature. 2017 May 25;545(7655):505-509. doi: 10.1038/nature22366. Epub 2017 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验