Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
Department of Chemistry - Angstrom Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden.
J Am Chem Soc. 2022 Jun 1;144(21):9399-9412. doi: 10.1021/jacs.2c01725. Epub 2022 May 20.
Light-driven conversion of CO to chemicals provides a sustainable alternative to fossil fuels, but homogeneous systems are typically limited by cross reactivity between different redox half reactions and inefficient charge separation. Herein, we present the bioinspired development of amphiphilic photosensitizer and catalyst pairs that self-assemble in lipid membranes to overcome some of these limitations and enable photocatalytic CO reduction in liposomes using precious metal-free catalysts. Using sodium ascorbate as a sacrificial electron source, a membrane-anchored alkylated cobalt porphyrin demonstrates higher catalytic CO production (1456 vs 312 turnovers) and selectivity (77 vs 11%) compared to its water-soluble nonalkylated counterpart. Time-resolved and steady-state spectroscopy revealed that self-assembly facilitates this performance enhancement by enabling a charge-separation state lifetime increase of up to two orders of magnitude in the dye while allowing for a ninefold faster electron transfer to the catalyst. Spectroelectrochemistry and density functional theory calculations of the alkylated Co porphyrin catalyst support a four-electron-charging mechanism that activates the catalyst prior to catalysis, together with key catalytic intermediates. Our molecular liposome system therefore benefits from membrane immobilization and provides a versatile and efficient platform for photocatalysis.
光驱动的 CO 转化为化学物质为化石燃料提供了一种可持续的替代品,但均相体系通常受到不同氧化还原半反应之间的交叉反应性和电荷分离效率低的限制。在此,我们提出了仿生亲脂性光敏剂和催化剂对的发展,它们在脂质膜中自组装以克服其中的一些限制,并使用无贵金属催化剂在脂质体中实现光催化 CO 还原。使用抗坏血酸钠作为牺牲电子源,与水溶性非烷基化对应物相比,膜锚定的烷基化钴卟啉显示出更高的催化 CO 生成(1456 次与 312 次转化)和选择性(77%与 11%)。时间分辨和稳态光谱表明,自组装通过使染料中的电荷分离状态寿命增加多达两个数量级,同时允许电子向催化剂转移快九倍,从而促进了这种性能的提高。烷基化 Co 卟啉催化剂的光谱电化学和密度泛函理论计算支持了一种四电子充电机制,该机制在催化之前激活催化剂,并形成关键的催化中间体。因此,我们的分子脂质体系统受益于膜固定,并为光催化提供了一种通用且高效的平台。