Sinambela Novitasari, Jacobi Richard, Sorsche Dieter, González Leticia, Pannwitz Andrea
Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria.
Angew Chem Int Ed Engl. 2025 May 26;64(22):e202423393. doi: 10.1002/anie.202423393. Epub 2025 Apr 26.
In natural photosynthesis, light-driven electron transfer across the thylakoid membrane enables efficient charge separation and the confinement of reaction spaces for generating NADPH and CO and oxidation of water. These reactions are complementary redox reactions and require different reaction conditions for optimal performance. However, current artificial photosynthesis studies only take place in the bulk and are sensitive toward oxygen and air, which limits their applicability under aerated and water-splitting conditions. Herein, we report light-driven electron transfer across a lipid bilayer membrane of liposome vesicles via a rigid oligoaromatic molecular wire that allows to electronically connect an oxidation and reduction reaction which are spatially separated by the membrane. The molecular wire has a simple, symmetric, easy-to-synthesize design based on benzothiadiazole and fluorene units and absorbs in the visible spectrum which makes it suitable for solar energy conversion. The model reactions in this study are light-driven NADH oxidation on one side of the membrane and light-driven reduction of an organic water-soluble dye in the bulk phase of liposomes. Additionally, the system is active in both aerobic and anaerobic atmospheres, rendering it ideal for aerobic conditions or reactions that produce oxygen such as solar-driven water splitting and artificial photosynthesis applications.
在自然光合作用中,光驱动的电子跨类囊体膜转移实现了高效的电荷分离,并限制了反应空间以生成NADPH和CO以及水的氧化。这些反应是互补的氧化还原反应,需要不同的反应条件以实现最佳性能。然而,目前的人工光合作用研究仅在本体中进行,并且对氧气和空气敏感,这限制了它们在充气和水分解条件下的适用性。在此,我们报告了通过刚性寡聚芳族分子导线实现光驱动的电子跨脂质体囊泡的脂质双分子层膜转移,该分子导线能够将被膜在空间上分隔开的氧化和还原反应进行电子连接。该分子导线基于苯并噻二唑和芴单元具有简单、对称且易于合成的设计,并在可见光谱中吸收,这使其适用于太阳能转换。本研究中的模型反应是膜一侧的光驱动NADH氧化和脂质体本体相中有机水溶性染料的光驱动还原。此外,该系统在有氧和无氧气氛中均具有活性,使其非常适合有氧条件或产生氧气的反应,如太阳能驱动的水分解和人工光合作用应用。