Zhang Huijie, Jaenecke Jan, Bishara-Robertson Imogen L, Casadevall Carla, Redman Holly J, Winkler Martin, Berggren Gustav, Plumeré Nicolas, Butt Julea N, Reisner Erwin, Jeuken Lars J C
Leiden Institute of Chemistry, Leiden University, PO box 9502, 2300 RA Leiden, The Netherlands.
Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Uferstrasse 53, 94315 Straubing, Germany.
J Am Chem Soc. 2024 Dec 18;146(50):34260-34264. doi: 10.1021/jacs.4c12311. Epub 2024 Dec 3.
A relatively unexplored energy source in synthetic cells is transmembrane electron transport, which like proton and ion transport can be light driven. Here, synthetic cells, called nanoreactors, are engineered for compartmentalized, semiartificial photosynthetic H production by a [FeFe]-hydrogenase (Hase). Transmembrane electron transfer into the nanoreactor was enabled by MtrCAB, a multiheme transmembrane protein from MR-1. On illumination, graphitic nitrogen-doped carbon dots (g-N-CDs) outside the nanoreactor generated and delivered photoenergized electrons to MtrCAB, which transferred these electrons to encapsulated Hase without requiring redox mediators. Compartmentalized, light-driven H production was observed with a turnover frequency (TOF) of 467 ± 64 h determined in the first 2 h. Addition of the redox mediator methyl viologen (MV) increased TOF to 880 ± 154 h. We hypothesize that the energetically "uphill" electron transfer step from MtrCAB to Hase ultimately limits the catalytic rate. These nanoreactors provide a scaffold to compartmentalize redox half reactions in semiartificial photosynthesis and inform on the engineering of nanoparticle-microbe hybrid systems for solar-to-chemical conversion.
合成细胞中一种相对未被充分探索的能量来源是跨膜电子传输,它与质子和离子传输一样可以由光驱动。在这里,被称为纳米反应器的合成细胞经过工程设计,通过一种[FeFe]-氢化酶(Hase)进行分隔式的半人工光合产氢。来自MR-1的多血红素跨膜蛋白MtrCAB实现了跨膜电子转移到纳米反应器中。光照时,纳米反应器外部的石墨氮掺杂碳点(g-N-CDs)产生并向MtrCAB传递光激发电子,MtrCAB将这些电子转移到封装的Hase,而无需氧化还原介质。在前2小时内测定的周转频率(TOF)为467±64 h-1,观察到了分隔式光驱动产氢。添加氧化还原介质甲基紫精(MV)使TOF提高到880±154 h-1。我们推测,从MtrCAB到Hase的能量“上坡”电子转移步骤最终限制了催化速率。这些纳米反应器为半人工光合作用中氧化还原半反应的分隔提供了一个支架,并为太阳能到化学能转化的纳米颗粒-微生物混合系统的工程设计提供了信息。