文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

小檗碱通过调节肠道微生物群抑制肠道促炎基因和致癌因子抑制肠道癌变。

Berberine inhibits intestinal carcinogenesis by suppressing intestinal pro-inflammatory genes and oncogenic factors through modulating gut microbiota.

机构信息

Department of Integrated Chinese and Western Medicine, Institute of Basic Medicine and Cancer (IBMC), The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.

Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, China.

出版信息

BMC Cancer. 2022 May 20;22(1):566. doi: 10.1186/s12885-022-09635-9.


DOI:10.1186/s12885-022-09635-9
PMID:35596224
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9123795/
Abstract

BACKGROUND: The role of Berberine (BBR) in colorectal cancer (CRC) and gut microbiota has begun to appreciate. However, there was no direct evidence confirm that the gut microbiota regulated by BBR could inhibit CRC. This report investigated the effect of stool from BBR treated subjects and its effect on CRC. METHODS: A mouse model for CRC was developed using azoxymethane (AOM) and dextran sulfate sodium (DSS). Intestinal tissue from affected mice were used to determine the efficacy of BBR against CRC. Stool samples were collected for the 16s rRNA gene sequencing and fecal microbiota transplantation (FMT). Finally, the mechanism of gut microbiota from BBR treated mice on CRC was explored using immunohistochemistry, RNA-Sequencing, quantitative RT-PCR, and western blot analyses. RESULTS: BBR significantly reduced intestinal tumor development. The richness of gut microbiota were notably decreased by BBR. Specifically, the relative abundance of beneficial bacteria (Roseburia, Eubacterium, Ruminococcaceae, and Firmicutes_unclassified) was increased while the level of bacteria (Odoribacter, Muribaculum, Mucispirillum, and Parasutterella) was decreased by BBR treatment. FMT experiment determined that the mice fed with stool from BBR treated AOM/DSS mice demonstrated a relatively lower abundance of macroscopic polyps and a significantly lower expression of β-catenin, and PCNA in intestinal tissue than mice fed with stool from AOM/DSS mice. Mechanistically, intestinal tissue obtained from mice fed with stool from BBR treated AOM/DSS mice demonstrated a decreased expression of inflammatory cytokines including interleukin 1β (IL-1β), tumor necrosis factor-α (TNF-α), C-C motif chemokine 1 (Ccl1), Ccl6, and C-X-C motif ligand (Cxcl9). In addition, the NF-κB expression was greatly suppressed in mice fed with stool from BBR treated AOM/DSS mice. Real-time PCR arrays revealed a down-regulation of genes involved in cell proliferation, angiogenesis, invasiveness, and metastasis in mice fed with stool from BBR treated AOM/DSS mice. CONCLUSIONS: Stool obtained from BBR treated AOM/DSS mice was able to increase colon length while simultaneously decreasing the density of macroscopic polyps, cell proliferation, inflammatory modulators and the expression of NF-κB. Therefore, it was concluded that suppression of pro-inflammatory genes and carcinogens factors by modulating gut microbiota was an important pathway for BBR to inhibit tumor growth in conventional mice.

摘要

背景:小檗碱(BBR)在结直肠癌(CRC)和肠道微生物群中的作用开始受到关注。然而,没有直接证据证实 BBR 调节的肠道微生物群可以抑制 CRC。本报告研究了 BBR 处理后的粪便对 CRC 的影响及其作用。

方法:使用氧化偶氮甲烷(AOM)和葡聚糖硫酸钠(DSS)建立 CRC 小鼠模型。使用受影响小鼠的肠道组织确定 BBR 对 CRC 的疗效。收集粪便样本进行 16s rRNA 基因测序和粪便微生物群移植(FMT)。最后,使用免疫组织化学、RNA 测序、定量 RT-PCR 和 Western blot 分析探索 BBR 处理小鼠肠道微生物群对 CRC 的作用机制。

结果:BBR 可显著降低肠道肿瘤的发生。BBR 明显降低了肠道微生物群的丰富度。具体而言,有益细菌(Roseburia、Eubacterium、Ruminococcaceae 和 Firmicutes_unclassified)的相对丰度增加,而细菌(Odoribacter、Muribaculum、Mucispirillum 和 Parasutterella)的水平降低。FMT 实验确定,喂食 BBR 处理的 AOM/DSS 小鼠粪便的小鼠表现出较少的宏观息肉和肠道组织中β-连环蛋白和 PCNA 的表达显著降低,而喂食 AOM/DSS 小鼠粪便的小鼠则表现出较多的宏观息肉和肠道组织中β-连环蛋白和 PCNA 的表达显著降低。机制上,喂食 BBR 处理的 AOM/DSS 小鼠粪便的小鼠肠道组织中促炎细胞因子的表达降低,包括白细胞介素 1β(IL-1β)、肿瘤坏死因子-α(TNF-α)、C-C 基序趋化因子 1(Ccl1)、Ccl6 和 C-X-C 基序配体(Cxcl9)。此外,喂食 BBR 处理的 AOM/DSS 小鼠粪便的小鼠中 NF-κB 的表达受到极大抑制。实时 PCR 阵列显示,喂食 BBR 处理的 AOM/DSS 小鼠粪便的小鼠中与细胞增殖、血管生成、侵袭和转移相关的基因表达下调。

结论:从 BBR 处理的 AOM/DSS 小鼠获得的粪便能够增加结肠长度,同时减少宏观息肉的密度、细胞增殖、炎症调节剂和 NF-κB 的表达。因此,结论是通过调节肠道微生物群抑制促炎基因和致癌因素是 BBR 抑制常规小鼠肿瘤生长的重要途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/06adfb09cd22/12885_2022_9635_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/d284d62987fc/12885_2022_9635_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/9549e4ed229a/12885_2022_9635_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/53e68105dd85/12885_2022_9635_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/b3f2d6334bbb/12885_2022_9635_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/71da21e96064/12885_2022_9635_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/4457db496c6f/12885_2022_9635_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/13d3bd76ac41/12885_2022_9635_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/4202b3209213/12885_2022_9635_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/0f144a25f8de/12885_2022_9635_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/06adfb09cd22/12885_2022_9635_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/d284d62987fc/12885_2022_9635_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/9549e4ed229a/12885_2022_9635_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/53e68105dd85/12885_2022_9635_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/b3f2d6334bbb/12885_2022_9635_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/71da21e96064/12885_2022_9635_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/4457db496c6f/12885_2022_9635_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/13d3bd76ac41/12885_2022_9635_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/4202b3209213/12885_2022_9635_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/0f144a25f8de/12885_2022_9635_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb31/9123795/06adfb09cd22/12885_2022_9635_Fig10_HTML.jpg

相似文献

[1]
Berberine inhibits intestinal carcinogenesis by suppressing intestinal pro-inflammatory genes and oncogenic factors through modulating gut microbiota.

BMC Cancer. 2022-5-20

[2]
Pre-Administration of Berberine Exerts Chemopreventive Effects in AOM/DSS-Induced Colitis-Associated Carcinogenesis Mice via Modulating Inflammation and Intestinal Microbiota.

Nutrients. 2022-2-9

[3]
A Holistic View of Berberine Inhibiting Intestinal Carcinogenesis in Conventional Mice Based on Microbiome-Metabolomics Analysis.

Front Immunol. 2020

[4]
Integration of microbiome, metabolomics and transcriptome for in-depth understanding of berberine attenuates AOM/DSS-induced colitis-associated colorectal cancer.

Biomed Pharmacother. 2024-10

[5]
Berberine inhibits high fat diet-associated colorectal cancer through modulation of the gut microbiota-mediated lysophosphatidylcholine.

Int J Biol Sci. 2023

[6]
Gavage of Fecal Samples From Patients With Colorectal Cancer Promotes Intestinal Carcinogenesis in Germ-Free and Conventional Mice.

Gastroenterology. 2017-8-18

[7]
AC1Q3QWB inhibits colorectal cancer progression by modulating the immune response and balancing the structure of the intestinal microbiota.

Int Immunopharmacol. 2023-3

[8]
Berberine regulates short-chain fatty acid metabolism and alleviates the colitis-associated colorectal tumorigenesis through remodeling intestinal flora.

Phytomedicine. 2022-7-20

[9]
Oxyberberine, a novel gut microbiota-mediated metabolite of berberine, possesses superior anti-colitis effect: Impact on intestinal epithelial barrier, gut microbiota profile and TLR4-MyD88-NF-κB pathway.

Pharmacol Res. 2020-2

[10]
Clostridium butyricum modulates gut microbiota and reduces colitis associated colon cancer in mice.

Int Immunopharmacol. 2020-11

引用本文的文献

[1]
Pharmacological properties and therapeutic potential of berberine: a comprehensive review.

Front Pharmacol. 2025-8-14

[2]
Polysaccharides derived from Rosa rugosa cv. Plena ameliorate colorectal cancer by regulating intestinal microbiota composition and lipid metabolism pathway.

NPJ Sci Food. 2025-8-14

[3]
Target identification of natural products in cancer with chemical proteomics and artificial intelligence approaches.

Cancer Biol Med. 2025-7-9

[4]
High-temperature stored soybean meal alters intestinal chyme composition and disrupts intestinal redox balance by increasing jejunal MAPK14 protein expression in broilers.

Poult Sci. 2025-6-7

[5]
Common mechanisms of Gut microbe-based strategies for the treatment of intestine-related diseases: based on multi-target interactions with the intestinal barrier.

Cell Commun Signal. 2025-6-18

[6]
Inflammatory cytokines mediate the gut microbiota-EGPA subtype link: a Mendelian randomization study.

Clin Rheumatol. 2025-6-12

[7]
Patients with periodontitis exhibit persistent dysbiosis of the gut microbiota and distinct serum metabolome.

J Oral Microbiol. 2025-5-8

[8]
Yi Gong San inhibits tumor immune escape by sensitizing colorectal cancer stem cells via the NF-κB pathway.

Hereditas. 2025-4-17

[9]
Absolute Quantitative Metagenomic Analysis Provides More Accurate Insights for the Anti-Colitis Effect of Berberine via Modulation of Gut Microbiota.

Biomolecules. 2025-3-11

[10]
Targeting the gut microbiota: a new strategy for colorectal cancer treatment.

J Transl Med. 2024-10-8

本文引用的文献

[1]
Role of the global gut microbial community in the development of colitis-associated cancer in a murine model.

Biomed Pharmacother. 2021-3

[2]
Gut Microbiome Components Predict Response to Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer: A Prospective, Longitudinal Study.

Clin Cancer Res. 2021-3-1

[3]
A Holistic View of Berberine Inhibiting Intestinal Carcinogenesis in Conventional Mice Based on Microbiome-Metabolomics Analysis.

Front Immunol. 2020

[4]
The chemopreventive effects of Huangqin-tea against AOM-induced preneoplastic colonic aberrant crypt foci in rats and omics analysis.

Food Funct. 2020-11-18

[5]
Fecal Microbiota Transplantation Prevents Intestinal Injury, Upregulation of Toll-Like Receptors, and 5-Fluorouracil/Oxaliplatin-Induced Toxicity in Colorectal Cancer.

Int J Mol Sci. 2020-1-8

[6]
A prospective cohort analysis of gut microbial co-metabolism in Alaska Native and rural African people at high and low risk of colorectal cancer.

Am J Clin Nutr. 2020-2-1

[7]
Characterization of tumor-infiltrating immune cells in relation to microbiota in colorectal cancers.

Cancer Immunol Immunother. 2019-11-26

[8]
Gut Bacteria and their Metabolites: Which One Is the Defendant for Colorectal Cancer?

Microorganisms. 2019-11-13

[9]
Role of the NF-κB signaling pathway in the pathogenesis of colorectal cancer.

Gene. 2019-12-3

[10]
Gut microbiota in colorectal cancer: mechanisms of action and clinical applications.

Nat Rev Gastroenterol Hepatol. 2019-9-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索