Suppr超能文献

用于二氧化碳捕集的聚烯烃重织超微孔膜

Polyolefin reweaved ultra-micropore membrane for CO capture.

作者信息

Chen Xiuling, Chen Guining, Xie Cong, Wu Lei, Liu Gongping, Li Nanwen, Jin Wanqin

机构信息

Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, Xianning, China.

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.

出版信息

Nat Commun. 2025 Jan 2;16(1):282. doi: 10.1038/s41467-024-55540-z.

Abstract

High-performance gas separation membranes have potential in industrial separation applications, while overcoming the permeability-selectivity trade-off via regulable aperture distribution remains challenging. Here, we report a strategy to fabricate Polyolefin Reweaved Ultra-micropore Membrane (PRUM) to acquire regulable microporous channel. Specifically, olefin monomers are dispersed uniformly into a pristine membrane (e.g., PIM-1) via solution diffusion method. Upon controlled electron beam irradiation, the olefin undergoes a free radical polymerization, resulting in the formation of olefin polymer in-situ reweaved in the membrane. The deliberately regulated and contracted pore-aperture size of the membrane can be accomplished by varying the olefin polymer loading to achieve efficient gas separation. For instance, PIM-1 PRUM containing 27 wt% poly-glycidyl methacrylate demonstrate CO permeability of 1976 Barrer, combined with CO/CH and CO/N selectivities of 58.4 and 48.3 respectively, transcending the performance upper bounds. This controllable and high efficiency-design strategy provides a general approach to create sub-nanometre-sized pore-apertures of gas separation membranes with wide universality.

摘要

高性能气体分离膜在工业分离应用中具有潜力,然而,通过可调节孔径分布来克服渗透率-选择性权衡仍然具有挑战性。在此,我们报道了一种制备聚烯烃再编织超微孔膜(PRUM)以获得可调节微孔通道的策略。具体而言,通过溶液扩散法将烯烃单体均匀分散到原始膜(如PIM-1)中。在受控电子束辐照下,烯烃发生自由基聚合,导致在膜中原位再编织形成烯烃聚合物。通过改变烯烃聚合物负载量可以实现对膜孔径大小的有意调节和收缩,从而实现高效气体分离。例如,含有27 wt%聚甲基丙烯酸缩水甘油酯的PIM-1 PRUM表现出1976 Barrer的CO渗透率,同时CO/CH和CO/N选择性分别为58.4和48.3,超越了性能上限。这种可控且高效的设计策略为创建具有广泛通用性的亚纳米级孔径气体分离膜提供了一种通用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d37/11697206/3753df1891c3/41467_2024_55540_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验