Suppr超能文献

具有 ACC 脱氨酶生产菌在胁迫农业中的作用的研究展望。

Perspective of ACC-deaminase producing bacteria in stress agriculture.

机构信息

Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.

College of Resources and Environment, Southwest University, Chongqing, China.

出版信息

J Biotechnol. 2022 Jun 20;352:36-46. doi: 10.1016/j.jbiotec.2022.05.002. Epub 2022 May 18.

Abstract

The 1-aminocyclopropane-1-carboxylate deaminase (ACCD) enzyme plays an important role in stress alleviation of both biotic and abiotic stressors in plants and thereby enhances their growth under harsh environmental conditions. In-depth analysis of AcdS gene encoding for ACC deaminase reveals its presence in diverse microorganisms including bacteria and fungi. Particularly, plant growth-promoting bacteria (PGPB) containing ACCD supports plant growth by modulating the level of 'stress ethylene' and cleaving its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) into α-ketobutyrate and ammonia, enabling PGPB to utilize ACC as a carbon and nitrogen source. The reduced synthesis of ethylene in plants further relieves the ethylene inhibition of plant growth and development, and improves plant resistance to various stressors. Therefore, the dual role of microbial ACCD makes it a cost-effective and eco-friendly biocatalyst for sustainable agricultural productions. The inducible ACCD encoding gene AcdS is differentially regulated by varying environmental conditions. Successful generation of transgenic plants with microbial AcdS gene enhanced biotic and abiotic stress tolerance in plants. In the present review, we discuss the importance of ACCD-producing PGPB for their ability to reduce ethylene production and the promotion of plant growth under stress conditions. We also highlighted the development of transgenic plants by overexpressing bacterial AcdS gene to improve their performance under stress conditions.

摘要

1-氨基环丙烷-1-羧酸脱氨酶(ACCD)酶在植物应对生物和非生物胁迫方面发挥着重要作用,从而增强了它们在恶劣环境条件下的生长。深入分析编码 ACC 脱氨酶的 AcdS 基因,发现其存在于包括细菌和真菌在内的多种微生物中。特别是含有 ACCD 的植物促生细菌(PGPB)通过调节“胁迫乙烯”水平并将其前体 1-氨基环丙烷-1-羧酸(ACC)裂解为α-酮丁酸和氨,从而促进植物生长,使 PGPB 能够将 ACC 用作碳和氮源。植物中乙烯合成的减少进一步缓解了乙烯对植物生长和发育的抑制作用,并提高了植物对各种胁迫的抗性。因此,微生物 ACCD 的双重作用使其成为一种具有成本效益和环保的生物催化剂,可用于可持续农业生产。诱导型 ACCD 编码基因 AcdS 受环境条件变化的差异调节。成功生成具有微生物 AcdS 基因的转基因植物增强了植物对生物和非生物胁迫的耐受性。在本综述中,我们讨论了产生 ACCD 的 PGPB 减少乙烯生成和促进胁迫条件下植物生长的能力的重要性。我们还强调了通过过表达细菌 AcdS 基因来开发转基因植物,以提高其在胁迫条件下的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验