Suppr超能文献

基于语法进化的密码安全伪随机数生成器设计。

Design of a cryptographically secure pseudo random number generator with grammatical evolution.

机构信息

Biocomputing and Developmental Systems Group, Lero, The Science Foundation Ireland Research Centre for Software, Computer Science and Information System Department, University of Limerick, Limerick, V94 T9PX, Ireland, UK.

Intel Research and Development Ireland Limited, Leixlip, W23 CX68, Ireland, UK.

出版信息

Sci Rep. 2022 May 21;12(1):8602. doi: 10.1038/s41598-022-11613-x.

Abstract

This work investigates the potential for using Grammatical Evolution (GE) to generate an initial seed for the construction of a pseudo-random number generator (PRNG) and cryptographically secure (CS) PRNG. We demonstrate the suitability of GE as an entropy source and show that the initial seeds exhibit an average entropy value of 7.940560934 for 8-bit entropy, which is close to the ideal value of 8. We then construct two random number generators, GE-PRNG and GE-CSPRNG, both of which employ these initial seeds. We use Monte Carlo simulations to establish the efficacy of the GE-PRNG using an experimental setup designed to estimate the value for pi, in which 100,000,000 random numbers were generated by our system. This returned the value of pi of 3.146564000, which is precise up to six decimal digits for the actual value of pi. We propose a new approach called control_flow_incrementor to generate cryptographically secure random numbers. The random numbers generated with CSPRNG meet the prescribed National Institute of Standards and Technology SP800-22 and the Diehard statistical test requirements. We also present a computational performance analysis of GE-CSPRNG demonstrating its potential to be used in industrial applications.

摘要

本工作研究了使用语法进化(GE)生成伪随机数生成器(PRNG)和密码安全(CS)PRNG 的初始种子的可能性。我们证明了 GE 作为熵源的适用性,并表明初始种子的平均熵值为 7.940560934,对于 8 位熵,接近 8 的理想值。然后,我们构建了两个随机数生成器,GE-PRNG 和 GE-CSPRNG,它们都使用这些初始种子。我们使用蒙特卡罗模拟来建立 GE-PRNG 的功效,使用设计用于估计 pi 值的实验设置,我们的系统生成了 100,000,000 个随机数。这返回了 pi 的值为 3.146564000,对于实际的 pi 值,精确到六位小数。我们提出了一种称为控制流增量器的新方法来生成密码安全的随机数。CSPRNG 生成的随机数符合规定的国家标准与技术研究所 SP800-22 和 Diehard 统计测试要求。我们还对 GE-CSPRNG 的计算性能进行了分析,展示了其在工业应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e408/9124193/bc32ad2b99ea/41598_2022_11613_Fig1_HTML.jpg

相似文献

1
Design of a cryptographically secure pseudo random number generator with grammatical evolution.
Sci Rep. 2022 May 21;12(1):8602. doi: 10.1038/s41598-022-11613-x.
2
Design and Test of an Integrated Random Number Generator with All-Digital Entropy Source.
Entropy (Basel). 2022 Jan 18;24(2):139. doi: 10.3390/e24020139.
3
Cryptographically Secure PseudoRandom Bit Generator for Wearable Technology.
Entropy (Basel). 2023 Jun 25;25(7):976. doi: 10.3390/e25070976.
4
Cryptographically Secure Pseudo-Random Number Generator IP-Core Based on SHA2 Algorithm.
Sensors (Basel). 2020 Mar 27;20(7):1869. doi: 10.3390/s20071869.
5
A High-Performance FPGA PRNG Based on Multiple Deep-Dynamic Transformations.
Entropy (Basel). 2024 Aug 7;26(8):671. doi: 10.3390/e26080671.
6
Novel pseudo-random number generator based on quantum random walks.
Sci Rep. 2016 Feb 4;6:20362. doi: 10.1038/srep20362.
8
FPGA based implementation of a perturbed Chen oscillator for secure embedded cryptosystems.
Sci Rep. 2024 Sep 11;14(1):21262. doi: 10.1038/s41598-024-71531-y.
9
Improving the pseudo-randomness properties of chaotic maps using deep-zoom.
Chaos. 2017 May;27(5):053116. doi: 10.1063/1.4983836.
10
Assessment of the suitability of different random number generators for Monte Carlo simulations in gamma-ray spectrometry.
Appl Radiat Isot. 2010 Mar;68(3):469-73. doi: 10.1016/j.apradiso.2009.11.037. Epub 2009 Nov 24.

引用本文的文献

1
Raw QPP-RNG randomness via system jitter across platforms: a NIST SP 800-90B evaluation.
Sci Rep. 2025 Jul 29;15(1):27718. doi: 10.1038/s41598-025-13135-8.

本文引用的文献

1
Suggested Integral Analysis for Chaos-Based Image Cryptosystems.
Entropy (Basel). 2019 Aug 20;21(8):815. doi: 10.3390/e21080815.
2
Novel pseudo-random number generator based on quantum random walks.
Sci Rep. 2016 Feb 4;6:20362. doi: 10.1038/srep20362.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验