Intelligent Mobile Platform Research Group, Department of Mechanical Engineering, KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium.
eMedia Research Lab/STADIUS, Department of Electrical Engineering (ESAT), KU Leuven, Andreas Vesaliusstraat 13, 3000, Leuven, Belgium.
BMC Med Inform Decis Mak. 2021 Dec 7;21(1):341. doi: 10.1186/s12911-021-01699-0.
BACKGROUND: Although deep neural networks (DNNs) are showing state of the art performance in clinical gait analysis, they are considered to be black-box algorithms. In other words, there is a lack of direct understanding of a DNN's ability to identify relevant features, hindering clinical acceptance. Interpretability methods have been developed to ameliorate this concern by providing a way to explain DNN predictions. METHODS: This paper proposes the use of an interpretability method to explain DNN decisions for classifying the movement that precedes freezing of gait (FOG), one of the most debilitating symptoms of Parkinson's disease (PD). The proposed two-stage pipeline consists of (1) a convolutional neural network (CNN) to model the reduction of movement present before a FOG episode, and (2) layer-wise relevance propagation (LRP) to visualize the underlying features that the CNN perceives as important to model the pathology. The CNN was trained with the sagittal plane kinematics from a motion capture dataset of fourteen PD patients with FOG. The robustness of the model predictions and learned features was further assessed on fourteen PD patients without FOG and fourteen age-matched healthy controls. RESULTS: The CNN proved highly accurate in modelling the movement that precedes FOG, with 86.8% of the strides being correctly identified. However, the CNN model was unable to model the movement for one of the seven patients that froze during the protocol. The LRP interpretability case study shows that (1) the kinematic features perceived as most relevant by the CNN are the reduced peak knee flexion and the fixed ankle dorsiflexion during the swing phase, (2) very little relevance for FOG is observed in the PD patients without FOG and the healthy control subjects, and (3) the poor predictive performance of one subject is attributed to the patient's unique and severely flexed gait signature. CONCLUSIONS: The proposed pipeline can aid clinicians in explaining DNN decisions in clinical gait analysis and aid machine learning practitioners in assessing the generalization of their models by ensuring that the predictions are based on meaningful kinematic features.
背景:尽管深度神经网络(DNN)在临床步态分析中表现出了最先进的性能,但它们被认为是黑盒算法。换句话说,人们缺乏对 DNN 识别相关特征的能力的直接理解,这阻碍了其在临床中的接受程度。可解释性方法的发展是为了通过提供一种解释 DNN 预测的方法来缓解这一问题。
方法:本文提出了一种可解释性方法,用于解释 DNN 对分类冻结步态(FOG)前运动的决策,FOG 是帕金森病(PD)最具致残性的症状之一。所提出的两阶段管道包括(1)卷积神经网络(CNN),用于对 FOG 发作前运动的减少进行建模,以及(2)层相关性传播(LRP),用于可视化 CNN 认为对建模病理重要的潜在特征。该 CNN 是用十四名患有 FOG 的 PD 患者的运动捕捉数据集的矢状面运动学进行训练的。还进一步在十四名没有 FOG 的 PD 患者和十四名年龄匹配的健康对照组上评估了模型预测和学习特征的稳健性。
结果:CNN 在对 FOG 前运动进行建模方面表现出了高度的准确性,86.8%的步长被正确识别。然而,CNN 模型无法对协议期间冻结的七名患者中的一名的运动进行建模。LRP 可解释性案例研究表明:(1)CNN 认为最相关的运动学特征是摆动相时减少的膝关节最大屈曲和固定的踝关节背屈,(2)在没有 FOG 的 PD 患者和健康对照组中很少观察到 FOG 的相关性,以及(3)一名患者的预测性能较差归因于该患者独特且严重弯曲的步态特征。
结论:所提出的管道可以帮助临床医生解释临床步态分析中的 DNN 决策,并帮助机器学习从业者通过确保预测基于有意义的运动学特征来评估其模型的泛化能力。
Annu Int Conf IEEE Eng Med Biol Soc. 2020-7
Comput Methods Programs Biomed. 2024-9
Sensors (Basel). 2019-5-27
Bioengineering (Basel). 2025-5-30
Front Aging Neurosci. 2023-7-12
Front Aging Neurosci. 2022-8-3
NPJ Parkinsons Dis. 2019-11-22
IEEE J Biomed Health Inform. 2020-9
IEEE Trans Neural Syst Rehabil Eng. 2019-8-6
Int J Environ Res Public Health. 2019-6-23