文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

罗沙司他通过稳定 HIF-1α 和激活 Wnt/β-连环蛋白信号通路促进成骨细胞分化,并预防雌激素缺乏引起的骨丢失。

Roxadustat promotes osteoblast differentiation and prevents estrogen deficiency-induced bone loss by stabilizing HIF-1α and activating the Wnt/β-catenin signaling pathway.

机构信息

Department of Nephrology, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.

出版信息

J Orthop Surg Res. 2022 May 21;17(1):286. doi: 10.1186/s13018-022-03162-w.


DOI:10.1186/s13018-022-03162-w
PMID:35597989
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9124388/
Abstract

BACKGROUND: Osteoporosis is a very common skeletal disorder that increases the risk of fractures. However, the treatment of osteoporosis is challenging. Hypoxia-inducible factor-1α (HIF-1α) plays an important role in bone metabolism. Roxadustat is a novel HIF stabilizer, and its effects on bone metabolism remain unknown. This study aimed to investigate the effects of roxadustat on osteoblast differentiation and bone remodeling in an ovariectomized (OVX) rat model. METHODS: In vitro, primary mouse calvarial osteoblasts were treated with roxadustat. Alkaline phosphatase (ALP) activity and extracellular matrix mineralization were assessed. The mRNA and protein expression levels of osteogenic markers were detected. The effects of roxadustat on the HIF-1α and Wnt/β-catenin pathways were evaluated. Furthermore, osteoblast differentiation was assessed again after HIF-1α expression knockdown or inhibition of the Wnt/β-catenin pathway. In vivo, roxadustat was administered orally to OVX rats for 12 weeks. Then, bone histomorphometric analysis was performed. The protein expression levels of the osteogenic markers HIF-1α and β-catenin in bone tissue were detected. RESULTS: In vitro, roxadustat significantly increased ALP staining intensity, enhanced matrix mineralization and upregulated the expression of osteogenic markers at the mRNA and protein levels in osteoblasts compared with the control group. Roxadustat activated the HIF-1α and Wnt/β-catenin pathways. HIF-1α knockdown or Wnt/β-catenin pathway inhibition significantly attenuated roxadustat-promoted osteoblast differentiation. In vivo, roxadustat administration improved bone microarchitecture deterioration and alleviated bone loss in OVX rats by promoting bone formation and inhibiting bone resorption. Roxadustat upregulated the protein expression levels of the osteogenic markers, HIF-1α and β-catenin in the bone tissue of OVX rats. CONCLUSION: Roxadustat promoted osteoblast differentiation and prevented bone loss in OVX rats. The use of roxadustat may be a new promising strategy to treat osteoporosis.

摘要

背景:骨质疏松症是一种非常常见的骨骼疾病,会增加骨折的风险。然而,骨质疏松症的治疗具有挑战性。缺氧诱导因子-1α(HIF-1α)在骨代谢中发挥重要作用。罗沙司他是一种新型的 HIF 稳定剂,其对骨代谢的影响尚不清楚。本研究旨在探讨罗沙司他对去卵巢(OVX)大鼠模型中成骨细胞分化和骨重塑的影响。

方法:在体外,用罗沙司他处理原代小鼠颅骨成骨细胞。评估碱性磷酸酶(ALP)活性和细胞外基质矿化。检测成骨标志物的 mRNA 和蛋白表达水平。评估罗沙司他对 HIF-1α 和 Wnt/β-catenin 通路的影响。此外,在 HIF-1α 表达敲低或抑制 Wnt/β-catenin 通路后,再次评估成骨细胞分化。在体内,用罗沙司他对 OVX 大鼠进行口服给药 12 周。然后进行骨组织形态计量学分析。检测骨组织中成骨标志物 HIF-1α 和 β-catenin 的蛋白表达水平。

结果:在体外,与对照组相比,罗沙司他显著增加了成骨细胞的 ALP 染色强度,增强了基质矿化,并上调了成骨标志物的 mRNA 和蛋白水平表达。罗沙司他激活了 HIF-1α 和 Wnt/β-catenin 通路。HIF-1α 敲低或 Wnt/β-catenin 通路抑制显著减弱了罗沙司他促进成骨细胞分化的作用。在体内,罗沙司他通过促进骨形成和抑制骨吸收来改善 OVX 大鼠的骨微结构恶化和骨丢失。罗沙司他上调了 OVX 大鼠骨组织中成骨标志物、HIF-1α 和 β-catenin 的蛋白表达水平。

结论:罗沙司他促进了 OVX 大鼠成骨细胞分化并防止了骨丢失。罗沙司他的使用可能是治疗骨质疏松症的一种新的有前途的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/b42feb13abdd/13018_2022_3162_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/56b9ed74ceca/13018_2022_3162_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/39643e1ed094/13018_2022_3162_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/14e652d70e97/13018_2022_3162_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/8a4672bae58c/13018_2022_3162_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/d691f7b3a5b3/13018_2022_3162_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/5a43e31b1f69/13018_2022_3162_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/2cf051c60cbe/13018_2022_3162_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/453c02a33f99/13018_2022_3162_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/0bda238125ca/13018_2022_3162_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/1784b24a384a/13018_2022_3162_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/b42feb13abdd/13018_2022_3162_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/56b9ed74ceca/13018_2022_3162_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/39643e1ed094/13018_2022_3162_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/14e652d70e97/13018_2022_3162_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/8a4672bae58c/13018_2022_3162_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/d691f7b3a5b3/13018_2022_3162_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/5a43e31b1f69/13018_2022_3162_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/2cf051c60cbe/13018_2022_3162_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/453c02a33f99/13018_2022_3162_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/0bda238125ca/13018_2022_3162_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/1784b24a384a/13018_2022_3162_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9e3/9124388/b42feb13abdd/13018_2022_3162_Fig11_HTML.jpg

相似文献

[1]
Roxadustat promotes osteoblast differentiation and prevents estrogen deficiency-induced bone loss by stabilizing HIF-1α and activating the Wnt/β-catenin signaling pathway.

J Orthop Surg Res. 2022-5-21

[2]
Dimethyloxalylglycine prevents bone loss in ovariectomized C57BL/6J mice through enhanced angiogenesis and osteogenesis.

PLoS One. 2014-11-13

[3]
Chrysosplenetin promotes osteoblastogenesis of bone marrow stromal cells via Wnt/β-catenin pathway and enhances osteogenesis in estrogen deficiency-induced bone loss.

Stem Cell Res Ther. 2019-8-29

[4]
Foxf1 knockdown promotes BMSC osteogenesis in part by activating the Wnt/β-catenin signalling pathway and prevents ovariectomy-induced bone loss.

EBioMedicine. 2020-1-22

[5]
Mir-381-3p aggravates ovariectomy-induced osteoporosis by inhibiting osteogenic differentiation through targeting KLF5/Wnt/β-catenin signaling pathway.

J Orthop Surg Res. 2024-8-17

[6]
Synergistic inhibition of Wnt pathway by HIF-1α and osteoblast-specific transcription factor osterix (Osx) in osteoblasts.

PLoS One. 2012-12-27

[7]
LncRNA HOTAIR inhibited osteogenic differentiation of BMSCs by regulating Wnt/β-catenin pathway.

Eur Rev Med Pharmacol Sci. 2019-9

[8]
ED-71 Prevents Glucocorticoid-Induced Osteoporosis by Regulating Osteoblast Differentiation via Notch and Wnt/β-Catenin Pathways.

Drug Des Devel Ther. 2022

[9]
Leonurine hydrochloride promotes osteogenic differentiation and increases osteoblastic bone formation in ovariectomized mice by Wnt/β-catenin pathway.

Biochem Biophys Res Commun. 2018-9-14

[10]
Muramyl dipeptide alleviates estrogen deficiency-induced osteoporosis through canonical Wnt signaling.

J Pathol. 2023-6

引用本文的文献

[1]
HIF1A overexpression promotes osteoblast differentiation through activation of autophagy to alleviate osteoporosis.

Sci Rep. 2025-8-19

[2]
Hypoxic niches established via endogenous oxygen production in scaffold under anoxia for enhanced bone regeneration.

Regen Biomater. 2025-6-26

[3]
Molecular crosstalk in SP7-mediated osteogenesis: Regulatory mechanisms and therapeutic potential.

Osteoporos Sarcopenia. 2025-6

[4]
Fused exosomal targeted therapy in periprosthetic osteolysis through regulation of bone metabolic homeostasis.

Bioact Mater. 2025-4-8

[5]
PML Regulated HIF1AN Ubiquitination and Activated PI3K/AKT Pathway to Promote Bone Marrow Mesenchymal Stem Cells Osteogenic Differentiation.

Int J Stem Cells. 2025-5-30

[6]
The Physiological Functions and Therapeutic Potential of Hypoxia-Inducible Factor-1α in Vascular Calcification.

Biomolecules. 2024-12-12

[7]
Using network pharmacology and molecular docking technology, proteomics and experiments were used to verify the effect of Yigu decoction (YGD) on the expression of key genes in osteoporotic mice.

Ann Med. 2025-12

[8]
The Bioactive Compounds of and Their Potential Mechanism of Action in Treating Osteoporosis: A Network Pharmacology and Experimental Validation Study.

Pharmaceuticals (Basel). 2024-5-29

[9]
Bioactive elements manipulate bone regeneration.

Biomater Transl. 2023-12-28

[10]
Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms.

Int J Mol Sci. 2023-4-10

本文引用的文献

[1]
The Effects of Osteoporotic and Non-osteoporotic Medications on Fracture Risk and Bone Mineral Density.

Drugs. 2021-11

[2]
Efficacy and Cardiovascular Safety of Roxadustat for Treatment of Anemia in Patients with Non-Dialysis-Dependent CKD: Pooled Results of Three Randomized Clinical Trials.

Clin J Am Soc Nephrol. 2021-8

[3]
Lgr4 promotes aerobic glycolysis and differentiation in osteoblasts via the canonical Wnt/β-catenin pathway.

J Bone Miner Res. 2021-8

[4]
Roxadustat for Treating Anemia in Patients with CKD Not on Dialysis: Results from a Randomized Phase 3 Study.

J Am Soc Nephrol. 2021-3

[5]
Intraperitoneal injection of Desferal® alleviated the age-related bone loss and senescence of bone marrow stromal cells in rats.

Stem Cell Res Ther. 2021-1-7

[6]
BMSC-Exosomes Carry Mutant HIF-1α for Improving Angiogenesis and Osteogenesis in Critical-Sized Calvarial Defects.

Front Bioeng Biotechnol. 2020-11-19

[7]
HIF/Ca/NO/ROS is critical in roxadustat treating bone fracture by stimulating the proliferation and migration of BMSCs.

Life Sci. 2020-10-28

[8]
Bone Microvasculature: Stimulus for Tissue Function and Regeneration.

Tissue Eng Part B Rev. 2021-8

[9]
Osteoblast-Osteoclast Coculture Amplifies Inhibitory Effects of FG-4592 on Human Osteoclastogenesis and Reduces Bone Resorption.

JBMR Plus. 2020-5-14

[10]
Both JNK1 and JNK2 Are Indispensable for Sensitized Extracellular Matrix Mineralization in IKKβ-Deficient Osteoblasts.

Front Endocrinol (Lausanne). 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索