School of Life Sciences and Biotechnology, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
Brief Bioinform. 2022 Sep 20;23(5). doi: 10.1093/bib/bbac180.
Differential expression (DE) gene detection in single-cell ribonucleic acid (RNA)-sequencing (scRNA-seq) data is a key step to understand the biological question investigated. Filtering genes is suggested to improve the performance of DE methods, but the influence of filtering genes has not been demonstrated. Furthermore, the optimal methods for different scRNA-seq datasets are divergent, and different datasets should benefit from data-specific DE gene detection strategies. However, existing tools did not take gene filtering into consideration. There is a lack of metrics for evaluating the optimal method on experimental datasets. Based on two new metrics, we propose single-cell Consensus Optimization of Differentially Expressed gene detection, an R package to automatically optimize DE gene detection for each experimental scRNA-seq dataset.
单细胞核糖核酸(RNA)测序(scRNA-seq)数据中的差异表达(DE)基因检测是理解所研究的生物学问题的关键步骤。过滤基因被建议用于提高 DE 方法的性能,但基因过滤的影响尚未得到证明。此外,不同 scRNA-seq 数据集的最佳方法存在差异,不同的数据集应该受益于特定于数据的 DE 基因检测策略。然而,现有的工具并没有考虑基因过滤。缺乏用于评估实验数据集上最佳方法的指标。基于两个新的指标,我们提出了单细胞一致性优化差异表达基因检测,这是一个 R 包,用于自动优化每个实验 scRNA-seq 数据集的 DE 基因检测。