Suppr超能文献

用于高效全水分解和电催化尿素氧化的FeOOH@CoO异质结的界面工程

Interfacial engineering of an FeOOH@CoO heterojunction for efficient overall water splitting and electrocatalytic urea oxidation.

作者信息

Zhang Qian, Sun Maosong, Yao Mengqi, Zhu Jie, Yang Sudong, Chen Lin, Sun Baolong, Zhang Jicai, Hu Wencheng, Zhao Peng

机构信息

Institute for Advanced Study, Chengdu University, No.2025, Chengluo 12 Avenue, Chengdu 610106, China.

Research Center for Optoelectronic Materials and Devices, School of Physic Science Technology, Guangxi University, Nanning 530004, China.

出版信息

J Colloid Interface Sci. 2022 Oct;623:617-626. doi: 10.1016/j.jcis.2022.05.070. Epub 2022 May 17.

Abstract

Constructing heterostructure is an efficient method to provide more active sites and optimize electronic structure for improving the oxygen evolution reaction (OER) and urea oxidation reaction (UOR) performance. Herein, the 3D FeOOH@CoO heterostructure was constructed using FeOOH layer (10-20 nm) coated on the surface of CoO nanoneedles through the strong hydrolysis of Fe. The FeOOH@CoO heterostructure not only retains the nanoneedle structure with open frameworks, but also improves the specific surface area and expedites the charge transfer. The FeOOH@CoO-240 heterostructure affords a remarkable OER performance with low overpotential of 228 mV at 10 mA·cm in 1 M KOH solution. The symmetrical urea electrolyzer using FeOOH@CoO-240 as both anode and cathode delivers 10 mA/cm at 1.43 V. Density functional theory (DFT) calculations unveil that the FeOOH@CoO-240 heterostructure could adjust the electronic structure and strengthen the conductivity. This work offered a facile strategy for designing heterojunction catalysts in an economic way.

摘要

构建异质结构是一种有效的方法,可为改善析氧反应(OER)和尿素氧化反应(UOR)性能提供更多活性位点并优化电子结构。在此,通过铁的强烈水解,在CoO纳米针表面包覆FeOOH层(10 - 20纳米)构建了3D FeOOH@CoO异质结构。FeOOH@CoO异质结构不仅保留了具有开放框架的纳米针结构,还提高了比表面积并加速了电荷转移。FeOOH@CoO - 240异质结构在1 M KOH溶液中,在10 mA·cm²时具有228 mV的低过电位,展现出卓越的OER性能。使用FeOOH@CoO - 240作为阳极和阴极的对称尿素电解槽在1.43 V时可提供10 mA/cm²的电流。密度泛函理论(DFT)计算表明,FeOOH@CoO - 240异质结构可调整电子结构并增强导电性。这项工作为以经济的方式设计异质结催化剂提供了一种简便策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验