Suppr超能文献

极早早产儿死亡率预测模型的建立与验证。

Development and Validation of a Mortality Prediction Model in Extremely Low Gestational Age Neonates.

机构信息

Department of Pediatrics, University of Texas Health San Antonio, San Antonio, Texas, USA.

Department of Biostatistics, Epidemiology and Molecular Pathology, Università Campus Bio-Medico di Roma, Rome, Italy.

出版信息

Neonatology. 2022;119(4):418-427. doi: 10.1159/000524729. Epub 2022 May 20.

Abstract

INTRODUCTION

Understanding factors that associate with neonatal death may lead to strategies or interventions that can aid clinicians and inform families.

OBJECTIVE

The aim of the study was to develop an early prediction model of neonatal death in extremely low gestational age (ELGA, <28 weeks) neonates.

METHODS

A predictive cohort study of ELGA neonates was derived from the Swedish Neonatal Quality Register between the years 2011 to May 2021. The goal was to use readily available clinical variables, collected within the first hour of birth, to predict in-hospital death. Data were split into a train cohort (80%) to build the model and tested in 20% of randomly selected neonates. Model performance was assessed via area under the receiver operating characteristic curve (AUC) and compared to validated mortality prediction models and an external cohort of neonates.

RESULTS

Among 3,752 live-born extremely preterm infants (46% girls), in-hospital mortality was 18% (n = 685). The median gestational age and birth weight were 25.0 weeks (interquartile range [IQR] 24.0, 27.0) and 780 g (IQR 620, 940), respectively. The proposed model consisted of three variables: birth weight (grams), Apgar score at 5 min of age, and gestational age (weeks). The BAG model had an AUC of 76.9% with a 95% confidence interval (CI) (72.6%, 81.3%), while birth weight and gestational age had an AUC of 73.1% (95% CI: 68.4%,77.9%) and 71.3% (66.3%, 76.2%). In the validation cohort, the BAG model had an AUC of 68.9%.

CONCLUSION

The BAG model is a new mortality prediction model in ELGA neonates that was developed using readily available information.

摘要

介绍

了解与新生儿死亡相关的因素可能会为临床医生提供策略或干预措施,并为家庭提供信息。

目的

本研究旨在为极早早产儿(<28 周)建立新生儿死亡的早期预测模型。

方法

这是一项来自瑞典新生儿质量登记处的预测性队列研究,时间范围为 2011 年至 2021 年 5 月。该研究的目的是使用出生后第一个小时内收集的易于获得的临床变量来预测院内死亡。数据被分为训练队列(80%)来建立模型,并在随机选择的 20%的新生儿中进行测试。通过接受者操作特征曲线下的面积(AUC)来评估模型性能,并与验证的死亡率预测模型和外部新生儿队列进行比较。

结果

在 3752 名活产极早产儿中(46%为女孩),院内死亡率为 18%(n=685)。中位胎龄和出生体重分别为 25.0 周(四分位距[IQR]24.0,27.0)和 780g(IQR 620,940)。所提出的模型由三个变量组成:出生体重(克)、5 分钟时的 Apgar 评分和胎龄(周)。BAG 模型的 AUC 为 76.9%,95%置信区间(CI)为 72.6%至 81.3%,而出生体重和胎龄的 AUC 分别为 73.1%(95%CI:68.4%,77.9%)和 71.3%(66.3%,76.2%)。在验证队列中,BAG 模型的 AUC 为 68.9%。

结论

BAG 模型是一种新的极早早产儿死亡率预测模型,它是使用易于获得的信息开发的。

相似文献

10
Survival analysis of a cohort of extremely preterm infants born in Finland during 2005-2013.芬兰 2005-2013 年期间出生的极早产儿队列的生存分析。
J Matern Fetal Neonatal Med. 2021 Aug;34(15):2506-2512. doi: 10.1080/14767058.2019.1668925. Epub 2019 Sep 26.

引用本文的文献

5
[Clinical characteristics of infection and colonization in extremely preterm infants].[极早产儿感染与定植的临床特征]
Zhongguo Dang Dai Er Ke Za Zhi. 2024 Aug 15;26(8):811-816. doi: 10.7499/j.issn.1008-8830.2403002.

本文引用的文献

8
A primer on model selection using the Akaike Information Criterion.关于使用赤池信息准则进行模型选择的入门知识。
Infect Dis Model. 2020 Jan 7;5:111-128. doi: 10.1016/j.idm.2019.12.010. eCollection 2020.
10
Visualising statistical models using dynamic nomograms.使用动态Nomogram 可视化统计模型。
PLoS One. 2019 Nov 15;14(11):e0225253. doi: 10.1371/journal.pone.0225253. eCollection 2019.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验