Townsville University Hospital, Townsville, Queensland, Australia.
College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.
J Med Imaging Radiat Oncol. 2022 Sep;66(6):781-797. doi: 10.1111/1754-9485.13436. Epub 2022 May 22.
Chemotherapy and radiotherapy can produce treatment-related effects, which may mimic tumour progression. Advances in Artificial Intelligence (AI) offer the potential to provide a more consistent approach of diagnosis with improved accuracy. The aim of this study was to determine the efficacy of machine learning models to differentiate treatment-related effects (TRE), consisting of pseudoprogression (PsP) and radiation necrosis (RN), and true tumour progression (TTP).
The systematic review was conducted in accordance with PRISMA-DTA guidelines. Searches were performed on PubMed, Scopus, Embase, Medline (Ovid) and ProQuest databases. Quality was assessed according to the PROBAST and CLAIM criteria. There were 25 original full-text journal articles eligible for inclusion.
For gliomas: PsP versus TTP (16 studies, highest AUC = 0.98), RN versus TTP (4 studies, highest AUC = 0.9988) and TRE versus TTP (3 studies, highest AUC = 0.94). For metastasis: RN vs. TTP (2 studies, highest AUC = 0.81). A meta-analysis was performed on 9 studies in the gliomas PsP versus TTP group using STATA. The meta-analysis reported a high sensitivity of 95.2% (95%CI: 86.6-98.4%) and specificity of 82.4% (95%CI: 67.0-91.6%).
TRE can be distinguished from TTP with good performance using machine learning-based imaging models. There remain issues with the quality of articles and the integration of models into clinical practice. Future studies should focus on the external validation of models and utilize standardized criteria such as CLAIM to allow for consistency in reporting.
化疗和放疗会产生治疗相关的影响,这些影响可能类似于肿瘤进展。人工智能(AI)的进步提供了一种更一致的诊断方法,具有更高的准确性。本研究的目的是确定机器学习模型在区分治疗相关效应(TRE),包括假性进展(PsP)和放射性坏死(RN)与真正的肿瘤进展(TTP)方面的有效性。
系统综述按照 PRISMA-DTA 指南进行。在 PubMed、Scopus、Embase、Medline(Ovid)和 ProQuest 数据库中进行了检索。根据 PROBAST 和 CLAIM 标准对质量进行评估。有 25 篇原始全文期刊文章符合纳入标准。
对于脑胶质瘤:PsP 与 TTP(16 项研究,最高 AUC=0.98),RN 与 TTP(4 项研究,最高 AUC=0.9988)和 TRE 与 TTP(3 项研究,最高 AUC=0.94)。对于转移瘤:RN 与 TTP(2 项研究,最高 AUC=0.81)。对脑胶质瘤 PsP 与 TTP 组的 9 项研究进行了 STATA 荟萃分析。荟萃分析报告了 95.2%(95%CI:86.6-98.4%)的高敏感性和 82.4%(95%CI:67.0-91.6%)的特异性。
使用基于机器学习的成像模型可以很好地区分 TRE 与 TTP。文章的质量和模型整合到临床实践中仍然存在问题。未来的研究应侧重于模型的外部验证,并利用 CLAIM 等标准化标准,以实现报告的一致性。