Suppr超能文献

机器学习成像在脑肿瘤中区分真性肿瘤进展与治疗相关效应的应用:系统评价和荟萃分析。

Machine learning imaging applications in the differentiation of true tumour progression from treatment-related effects in brain tumours: A systematic review and meta-analysis.

机构信息

Townsville University Hospital, Townsville, Queensland, Australia.

College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.

出版信息

J Med Imaging Radiat Oncol. 2022 Sep;66(6):781-797. doi: 10.1111/1754-9485.13436. Epub 2022 May 22.

Abstract

INTRODUCTION

Chemotherapy and radiotherapy can produce treatment-related effects, which may mimic tumour progression. Advances in Artificial Intelligence (AI) offer the potential to provide a more consistent approach of diagnosis with improved accuracy. The aim of this study was to determine the efficacy of machine learning models to differentiate treatment-related effects (TRE), consisting of pseudoprogression (PsP) and radiation necrosis (RN), and true tumour progression (TTP).

METHODS

The systematic review was conducted in accordance with PRISMA-DTA guidelines. Searches were performed on PubMed, Scopus, Embase, Medline (Ovid) and ProQuest databases. Quality was assessed according to the PROBAST and CLAIM criteria. There were 25 original full-text journal articles eligible for inclusion.

RESULTS

For gliomas: PsP versus TTP (16 studies, highest AUC = 0.98), RN versus TTP (4 studies, highest AUC = 0.9988) and TRE versus TTP (3 studies, highest AUC = 0.94). For metastasis: RN vs. TTP (2 studies, highest AUC = 0.81). A meta-analysis was performed on 9 studies in the gliomas PsP versus TTP group using STATA. The meta-analysis reported a high sensitivity of 95.2% (95%CI: 86.6-98.4%) and specificity of 82.4% (95%CI: 67.0-91.6%).

CONCLUSION

TRE can be distinguished from TTP with good performance using machine learning-based imaging models. There remain issues with the quality of articles and the integration of models into clinical practice. Future studies should focus on the external validation of models and utilize standardized criteria such as CLAIM to allow for consistency in reporting.

摘要

简介

化疗和放疗会产生治疗相关的影响,这些影响可能类似于肿瘤进展。人工智能(AI)的进步提供了一种更一致的诊断方法,具有更高的准确性。本研究的目的是确定机器学习模型在区分治疗相关效应(TRE),包括假性进展(PsP)和放射性坏死(RN)与真正的肿瘤进展(TTP)方面的有效性。

方法

系统综述按照 PRISMA-DTA 指南进行。在 PubMed、Scopus、Embase、Medline(Ovid)和 ProQuest 数据库中进行了检索。根据 PROBAST 和 CLAIM 标准对质量进行评估。有 25 篇原始全文期刊文章符合纳入标准。

结果

对于脑胶质瘤:PsP 与 TTP(16 项研究,最高 AUC=0.98),RN 与 TTP(4 项研究,最高 AUC=0.9988)和 TRE 与 TTP(3 项研究,最高 AUC=0.94)。对于转移瘤:RN 与 TTP(2 项研究,最高 AUC=0.81)。对脑胶质瘤 PsP 与 TTP 组的 9 项研究进行了 STATA 荟萃分析。荟萃分析报告了 95.2%(95%CI:86.6-98.4%)的高敏感性和 82.4%(95%CI:67.0-91.6%)的特异性。

结论

使用基于机器学习的成像模型可以很好地区分 TRE 与 TTP。文章的质量和模型整合到临床实践中仍然存在问题。未来的研究应侧重于模型的外部验证,并利用 CLAIM 等标准化标准,以实现报告的一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5763/9545346/831e5413a7c4/ARA-66-781-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验